咨询与建议

限定检索结果

文献类型

  • 72 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 118 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 58 篇 计算机科学与技术...
    • 57 篇 控制科学与工程
    • 56 篇 软件工程
    • 17 篇 生物工程
    • 14 篇 机械工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 力学(可授工学、理...
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 5 篇 化学工程与技术
    • 5 篇 交通运输工程
    • 4 篇 光学工程
    • 3 篇 信息与通信工程
    • 3 篇 安全科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
  • 46 篇 理学
    • 22 篇 数学
    • 15 篇 生物学
    • 14 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 8 篇 系统科学
    • 6 篇 化学
  • 9 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 6 篇 医学
    • 6 篇 基础医学(可授医学...
    • 6 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学

主题

  • 13 篇 motion planning
  • 8 篇 planning
  • 5 篇 reinforcement le...
  • 5 篇 deep learning
  • 5 篇 robots
  • 5 篇 trajectory
  • 4 篇 measurement
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 safety
  • 3 篇 optimization
  • 3 篇 uncertainty
  • 2 篇 tools
  • 2 篇 conferences
  • 2 篇 programming
  • 2 篇 task analysis
  • 2 篇 three-dimensiona...
  • 2 篇 continuous time ...
  • 2 篇 buildings
  • 2 篇 stability analys...

机构

  • 23 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 7 篇 machine learning...
  • 6 篇 the learning sys...
  • 6 篇 max planck insti...
  • 4 篇 vector institute...
  • 4 篇 bosch center for...
  • 4 篇 technical univer...
  • 4 篇 the university o...
  • 4 篇 autonomous syste...
  • 4 篇 max planck insti...
  • 4 篇 the vector insti...
  • 4 篇 max planck insti...
  • 3 篇 abb corporate re...
  • 3 篇 university of ta...
  • 3 篇 max-planck insti...
  • 3 篇 max plank eth ce...
  • 3 篇 division of robo...
  • 2 篇 school of mathem...

作者

  • 27 篇 toussaint marc
  • 17 篇 schoellig angela...
  • 12 篇 mainprice jim
  • 12 篇 marc toussaint
  • 9 篇 zhou siqi
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 6 篇 angela p. schoel...
  • 6 篇 brunke lukas
  • 6 篇 kratzer philipp
  • 5 篇 siqi zhou
  • 5 篇 danny driess
  • 5 篇 hartmann valenti...
  • 4 篇 ozgur s. oguz
  • 4 篇 jim mainprice
  • 4 篇 schaal stefan
  • 4 篇 oh yoojin
  • 4 篇 bennewitz maren
  • 3 篇 pan sicong
  • 3 篇 heins adam

语言

  • 111 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Learning Systems and Robotics Lab"
118 条 记 录,以下是101-110 订阅
排序:
Context-Based Meta Reinforcement learning for Robust and Adaptable Peg-in-Hole Assembly Tasks
arXiv
收藏 引用
arXiv 2024年
作者: Shokry, Ahmed Gomaa, Walid Zaenker, Tobias Dawood, Murad Maged, Shady A. Awad, Mohammed I. Bennewitz, Maren Humanoid Robots Lab University of Bonn the Center for Robotics Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Bonn Germany Cyber Physical Systems Lab Egypt Japan University of Science and Technology Alexandria Egypt Faculty of Engineering Alexandria University Alexandria Egypt Mechatronics Department Ain Shams University Cairo Egypt
Peg-in-hole assembly in unknown environments is a challenging task due to onboard sensor errors, which result in uncertainty and variations in task parameters such as the hole position and orientation. Meta Reinforcem... 详细信息
来源: 评论
Semantically Safe Robot Manipulation: From Semantic Scene Understanding to Motion Safeguards
arXiv
收藏 引用
arXiv 2024年
作者: Brunke, Lukas Zhang, Yanni Römer, Ralf Naimer, Jack Staykov, Nikola Zhou, Siqi Schoellig, Angela P. The Learning Systems and Robotics Lab The Munich Institute of Robotics and Machine Intelligence Technical University of Munich Munich80333 Germany University of Toronto Institute for Aerospace Studies North YorkONM3H 5T6 Canada University of Toronto Robotics Institute TorontoONM5S 1A4 Canada Vector Institute for Artificial Intelligence TorontoONM5G 0C6 Canada
Ensuring safe interactions in human-centric environments requires robots to understand and adhere to constraints recognized by humans as "common sense" (e.g., "moving a cup of water above a laptop is un... 详细信息
来源: 评论
Optical Tactile Sensing for Aerial Multi-Contact Interaction: Design, Integration, and Evaluation
arXiv
收藏 引用
arXiv 2024年
作者: Aucone, Emanuele Sferrazza, Carmelo Gregor, Manuel D'Andrea, Raffaello Mintchev, Stefano The Environmental Robotics Laboratory Dept. of Environmental Systems Science ETH Zürich Zürich8092 Switzerland Birmensdorf8903 Switzerland The Robot Learning Lab UC Berkeley BerkeleyCA94704 United States The Institute for Dynamic Systems and Control Dept. of Mechanical and Process Engineering ETH Zürich Zürich8092 Switzerland
Distributed tactile sensing for multi-force detection is crucial for various aerial robot interaction tasks. However, current contact sensing solutions on drones only exploit single end-effector sensors and cannot pro... 详细信息
来源: 评论
Recurrent kalman networks: Factorized inference in high-dimensional deep feature spaces
arXiv
收藏 引用
arXiv 2019年
作者: Becker, Philipp Pandya, Harit Gebhardt, Gregor Zhao, Cheng Taylor, James Neumann, Gerhard Computational Learning for Autonomous Systems TU Darmstadt Darmstadt Germany Bosch Center for Artificial Intelligence Renningen Germany University of Tübingen Tübingen Germany Lincoln Center for Autonomous Systems University of Lincoln Lincoln United Kingdom Extreme Robotics Lab University of Birmingham Birmingham United Kingdom Engineering Department Lancaster University Lancaster United Kingdom
In order to integrate uncertainty estimates into deep time-series modelling, Kalman Filters (KFs) (Kalman et al., 1960) have been integrated with deep learning models, however, such approaches typically rely on approx... 详细信息
来源: 评论
Comparison between Behavior Trees and Finite State Machines
arXiv
收藏 引用
arXiv 2024年
作者: Iovino, Matteo Förster, Julian Falco, Pietro Chung, Jen Jen Siegwart, Roland Smith, Christian ABB Corporate Research Västerås Sweden Autonomous Systems Lab ETH Zürich Zürich Switzerland Department of Information Engineering University of Padova Italy School of EECS The University of Queensland Australia Division of Robotics Perception and Learning KTH - Royal Institute of Technology Stockholm Sweden
Behavior Trees (BTs) were first conceived in the computer games industry as a tool to model agent behavior, but they received interest also in the robotics community as an alternative policy design to Finite State Mac... 详细信息
来源: 评论
Non-invasive urinary bladder volume estimation with artefact-suppressed bio-impedance measurements
arXiv
收藏 引用
arXiv 2023年
作者: Dheman, Kanika Walser, Stefan Mayer, Philipp Eggimann, Manuel Kozomara, Marko Franke, Denise Hermanns, Thomas Sax, Hugo Schürle, Simone Magno, Michele Project Based Learning Center ETH Zürich Switzerland Multi-Scale Robotics Lab ETH Zürich Switzerland Integrated Systems Laboratory ETH Zürich Switzerland Department of Infectious Diseases Bern University Hospital University of Berm Switzerland Klinik für Urologie Unispital Zurich Switzerland Responsive Biomedical Systems Laboratory ETH Zurich Switzerland
Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization or ultrasound measurements performed by highly skilled personnel.... 详细信息
来源: 评论
Forecasting intracranial hypertension using multi-scale waveform metrics
arXiv
收藏 引用
arXiv 2019年
作者: Hüser, Matthias Kündig, Adrian Karlen, Walter De Luca, Valeria Jaggi, Martin Biomedical Informatics Group Department of Computer Science ETH Zürich Universitätstrasse 6 Zürich8092 Switzerland Mobile Health Systems Lab Institute of Robotics and Intelligent Systems Department of Health Sciences and Technology ETH Zürich Zürich8008 Switzerland Department of Information Technology and Electrical Engineering ETH Zürich Zürich8092 Switzerland Machine Learning & Optimization Lab EPFL Lausanne1015 Switzerland
Objective: Acute intracranial hypertension is an important risk factor of secondary brain damage after traumatic brain injury. Hypertensive episodes are often diagnosed reactively, leading to late detection and lost t... 详细信息
来源: 评论
Rearrangement with Nonprehensile Manipulation Using Deep Reinforcement learning
arXiv
收藏 引用
arXiv 2018年
作者: Yuan, Weihao Stork, Johannes A. Kragic, Danica Wang, Michael Y. Hang, Kaiyu Department of Electronic and Computer Engineering Hong Kong University of Science and Technology and Hkust Robotics Institute Dept. of Mech. and Aerospace Engineering and the Department of Electronic and Computer Engineering Department of ComputerScience and Engineering and Hkust Institute for Advanced Study Perception and Learning Lab Centre for Autonomous Systems Kth Royal Institute of Technology Sweden
Rearranging objects on a tabletop surface by means of nonprehensile manipulation is a task which requires skillful interaction with the physical world. Usually, this is achieved by precisely modeling physical properti... 详细信息
来源: 评论
Fast and continuous foothold adaptation for dynamic locomotion through CNNs
arXiv
收藏 引用
arXiv 2018年
作者: Villarreal, Octavio Barasuol, Victor Camurri, Marco Franceschi, Luca Focchi, Michele Pontil, Massimiliano Caldwell, Darwin G. Semini, Claudio Dynamic Legged Systems lab Istituto Italiano di Tecnologia Via Morego 30 Genoa16163 Italy Computational Statistics and Machine Learning Istituto Italiano di Tecnologia Via Morego 30 Genoa16163 Italy Department of Advanced Robotics Istituto Italiano di Tecnologia Via Morego 30 Genoa16163 Italy Oxford Robotics Institute University of Oxford 23 Banbury Rd OxfordOX2 6NN United Kingdom
—Legged robots can outperform wheeled machines for most navigation tasks across unknown and rough terrains. For such tasks, visual feedback is a fundamental asset to provide robots with terrain-awareness. However, ro... 详细信息
来源: 评论
Reports of the AAAI 2010 spring symposia
Reports of the AAAI 2010 spring symposia
收藏 引用
作者: Barkowsky, Thomas Bertel, Sven Broz, Frank Chaudhri, Vinay K. Eagle, Nathan Genesereth, Michael Halpin, Harry Hamner, Emily Hoffmann, Gabe Hölscher, Christoph Horvitz, Eric Lauwers, Tom McGuinness, Deborah L. Michalowski, Marek Mower, Emily Shipley, Thomas F. Stubbs, Kristen Vogl, Roland Williams, Mary-Anne Cognitive Systems Group University of Bremen Research Center SFB/TR 8 Spatial Cognition Germany Human Factors Division Beckman Institute for Advanced Science and Technology University of Illinois Urbana-Champaign IL United States Adaptive Systems Research Group Computer Science Department University of Hertfordshire United Kingdom Artificial Intelligence Center at SRI International United States Txteagle Inc. MIT Media Laboratory United States Computer Science Department Stanford University United States University of Edinburgh United Kingdom Robotics Institute Carnegie Mellon University United States Palo Alto Research Center United States Center for Cognitive Science University of Freiburg Germany CREATE lab Carnegie Mellon Robotics Institute United States Rensselaer Polytechnic Institute United States University of Southern California United States Department of Psychology Temple University Spatial Intelligence and Learning Center United States IRobot Corporation United States Stanford Program in Law Science and Technology Stanford University Law School United States Innovation and Enterprise Research Laboratory University of Technology Sydney Australia
The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, presented the 2010 Spring Symposium Series Monday through Wednesday, March ... 详细信息
来源: 评论