咨询与建议

限定检索结果

文献类型

  • 72 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 118 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 58 篇 计算机科学与技术...
    • 57 篇 控制科学与工程
    • 56 篇 软件工程
    • 17 篇 生物工程
    • 14 篇 机械工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 力学(可授工学、理...
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 5 篇 化学工程与技术
    • 5 篇 交通运输工程
    • 4 篇 光学工程
    • 3 篇 信息与通信工程
    • 3 篇 安全科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
  • 46 篇 理学
    • 22 篇 数学
    • 15 篇 生物学
    • 14 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 8 篇 系统科学
    • 6 篇 化学
  • 9 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 6 篇 医学
    • 6 篇 基础医学(可授医学...
    • 6 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学

主题

  • 13 篇 motion planning
  • 8 篇 planning
  • 5 篇 reinforcement le...
  • 5 篇 deep learning
  • 5 篇 robots
  • 5 篇 trajectory
  • 4 篇 measurement
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 safety
  • 3 篇 optimization
  • 3 篇 uncertainty
  • 2 篇 tools
  • 2 篇 conferences
  • 2 篇 programming
  • 2 篇 task analysis
  • 2 篇 three-dimensiona...
  • 2 篇 continuous time ...
  • 2 篇 buildings
  • 2 篇 stability analys...

机构

  • 23 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 7 篇 machine learning...
  • 6 篇 the learning sys...
  • 6 篇 max planck insti...
  • 4 篇 vector institute...
  • 4 篇 bosch center for...
  • 4 篇 technical univer...
  • 4 篇 the university o...
  • 4 篇 autonomous syste...
  • 4 篇 max planck insti...
  • 4 篇 the vector insti...
  • 4 篇 max planck insti...
  • 3 篇 abb corporate re...
  • 3 篇 university of ta...
  • 3 篇 max-planck insti...
  • 3 篇 max plank eth ce...
  • 3 篇 division of robo...
  • 2 篇 school of mathem...

作者

  • 27 篇 toussaint marc
  • 17 篇 schoellig angela...
  • 12 篇 mainprice jim
  • 12 篇 marc toussaint
  • 9 篇 zhou siqi
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 6 篇 angela p. schoel...
  • 6 篇 brunke lukas
  • 6 篇 kratzer philipp
  • 5 篇 siqi zhou
  • 5 篇 danny driess
  • 5 篇 hartmann valenti...
  • 4 篇 ozgur s. oguz
  • 4 篇 jim mainprice
  • 4 篇 schaal stefan
  • 4 篇 oh yoojin
  • 4 篇 bennewitz maren
  • 3 篇 pan sicong
  • 3 篇 heins adam

语言

  • 111 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Learning Systems and Robotics Lab"
118 条 记 录,以下是11-20 订阅
排序:
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation  5
Distilling Motion Planner Augmented Policies into Visual Con...
收藏 引用
5th Conference on Robot learning, CoRL 2021
作者: Arthur Liu, I-Chun Uppal, Shagun Sukhatme, Gaurav S. Lim, Joseph J. Englert, Peter Lee, Youngwoon Cognitive Learning for Vision and Robotics Lab University of Southern California United States Robotic Embedded Systems Laboratory University of Southern California United States
learning complex manipulation tasks in realistic, obstructed environments is a challenging problem due to hard exploration in the presence of obstacles and high-dimensional visual observations. Prior work tackles the ... 详细信息
来源: 评论
ST-RRT*: Asymptotically-Optimal Bidirectional Motion Planning through Space-Time
arXiv
收藏 引用
arXiv 2022年
作者: Grothe, Francesco Hartmann, Valentin N. Orthey, Andreas Toussaint, Marc Learning and Intelligent Systems Group TU Berlin Germany Machine Learning & Robotics Lab University of Stuttgart Germany
We present a motion planner for planning through space-time with dynamic obstacles, velocity constraints, and unknown arrival time. Our algorithm, Space-Time RRT* (ST-RRT*), is a probabilistically complete, bidirectio... 详细信息
来源: 评论
learning to execute: efficiently learning universal plan-conditioned policies in robotics  21
Learning to execute: efficiently learning universal plan-con...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing systems
作者: Ingmar Schubert Danny Driess Ozgur S. Oguz Marc Toussaint Learning and Intelligent Systems Group TU Berlin Germany Machine Learning and Robotics Lab University of Stuttgart Germany
Applications of Reinforcement learning (RL) in robotics are often limited by high data demand. On the other hand, approximate models are readily available in many robotics scenarios, making model-based approaches like...
来源: 评论
learning to execute: Efficiently learning universal plan-conditioned policies in robotics
arXiv
收藏 引用
arXiv 2021年
作者: Schubert, Ingmar Driess, Danny Oguz, Ozgur S. Toussaint, Marc Learning and Intelligent Systems Group Tu Berlin Germany Machine Learning and Robotics Lab University of Stuttgart Germany
Applications of Reinforcement learning (RL) in robotics are often limited by high data demand. On the other hand, approximate models are readily available in many robotics scenarios, making model-based approaches like... 详细信息
来源: 评论
Co-Optimizing Robot, Environment, and Tool Design via Joint Manipulation Planning
Co-Optimizing Robot, Environment, and Tool Design via Joint ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Marc Toussaint Jung-Su Ha Ozgur S. Oguz Learning & Intelligent Systems Lab TU Berlin Germany Max Planck Institute for Intelligent Systems Germany Machine Learning & Robotics Lab University of Stuttgart Germany
Existing work on sequential manipulation planning and trajectory optimization typically assumes the robot, environment and tools to be given. However, in particular in industrial applications, it is highly interesting... 详细信息
来源: 评论
Diffusion Predictive Control with Constraints
arXiv
收藏 引用
arXiv 2024年
作者: Römer, Ralf von Rohr, Alexander Schoellig, Angela P. Learning Systems and Robotics Lab Technical University of Munich Munich80333 Germany Germany
Diffusion models have recently gained popularity for policy learning in robotics due to their ability to capture high-dimensional and multimodal distributions. However, diffusion policies are inherently stochastic and... 详细信息
来源: 评论
learning Efficient Constraint Graph Sampling for Robotic Sequential Manipulation
Learning Efficient Constraint Graph Sampling for Robotic Seq...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Joaquim Ortiz-Haro Valentin N. Hartmann Ozgur S. Oguz Marc Toussaint Machine Learning & Robotics Lab University of Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Germany Max Planck Institute for Intelligent Systems Germany
Efficient sampling from constraint manifolds, and thereby generating a diverse set of solutions for feasibility problems, is a fundamental challenge. We consider the case where a problem is factored, that is, the unde... 详细信息
来源: 评论
Deep 6-DoF Tracking of Unknown Objects for Reactive Grasping
Deep 6-DoF Tracking of Unknown Objects for Reactive Grasping
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Marc Tuscher Julian Hörz Danny Driess Marc Toussaint sereact Machine Learning and Robotics Lab University of Stuttgart Max-Planck Institute for Intelligent Systems Stuttgart Learning and Intelligent Systems TU Berlin
Robotic manipulation of unknown objects is an important field of research. Practical applications occur in many real-world settings where robots need to interact with an unknown environment. We tackle the problem of r... 详细信息
来源: 评论
Agent self-assessment: Determining policy quality without execution
Agent self-assessment: Determining policy quality without ex...
收藏 引用
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement learning
作者: Hans, Alexander Duell, Siegmund Udluft, Steffen Neuroinformatics and Cognitive Robotics Lab Ilmenau University of Technology Ilmenau Germany Machine Learning Group Berlin Institute of Technology Berlin Germany Intelligent Systems and Control Siemens AG Corporate Technology Munich Munich Germany
With the development of data-efficient reinforcement learning (RL) methods, a promising data-driven solution for optimal control of complex technical systems has become available. For the application of RL to a techni... 详细信息
来源: 评论
Safe Multi-Agent Reinforcement learning for Behavior-Based Cooperative Navigation
arXiv
收藏 引用
arXiv 2023年
作者: Dawood, Murad Pan, Sicong Dengler, Nils Zhou, Siqi Schoellig, Angela P. Bennewitz, Maren The Humanoid Robots Lab University of Bonn Germany The Lamarr Institute for Machine Learning and Artificial Intelligence and the Center for Robotics Bonn Germany The Learning Systems and Robotics lab The Technical University of Munich Germany
In this paper, we address the problem of behavior-based cooperative navigation of mobile robots using safe multi-agent reinforcement learning (MARL). Our work is the first to focus on cooperative navigation without in... 详细信息
来源: 评论