咨询与建议

限定检索结果

文献类型

  • 72 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 118 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 58 篇 计算机科学与技术...
    • 57 篇 控制科学与工程
    • 56 篇 软件工程
    • 17 篇 生物工程
    • 14 篇 机械工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 力学(可授工学、理...
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 5 篇 化学工程与技术
    • 5 篇 交通运输工程
    • 4 篇 光学工程
    • 3 篇 信息与通信工程
    • 3 篇 安全科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
  • 46 篇 理学
    • 22 篇 数学
    • 15 篇 生物学
    • 14 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 8 篇 系统科学
    • 6 篇 化学
  • 9 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 6 篇 医学
    • 6 篇 基础医学(可授医学...
    • 6 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学

主题

  • 13 篇 motion planning
  • 8 篇 planning
  • 5 篇 reinforcement le...
  • 5 篇 deep learning
  • 5 篇 robots
  • 5 篇 trajectory
  • 4 篇 measurement
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 safety
  • 3 篇 optimization
  • 3 篇 uncertainty
  • 2 篇 tools
  • 2 篇 conferences
  • 2 篇 programming
  • 2 篇 task analysis
  • 2 篇 three-dimensiona...
  • 2 篇 continuous time ...
  • 2 篇 buildings
  • 2 篇 stability analys...

机构

  • 23 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 7 篇 machine learning...
  • 6 篇 the learning sys...
  • 6 篇 max planck insti...
  • 4 篇 vector institute...
  • 4 篇 bosch center for...
  • 4 篇 technical univer...
  • 4 篇 the university o...
  • 4 篇 autonomous syste...
  • 4 篇 max planck insti...
  • 4 篇 the vector insti...
  • 4 篇 max planck insti...
  • 3 篇 abb corporate re...
  • 3 篇 university of ta...
  • 3 篇 max-planck insti...
  • 3 篇 max plank eth ce...
  • 3 篇 division of robo...
  • 2 篇 school of mathem...

作者

  • 27 篇 toussaint marc
  • 17 篇 schoellig angela...
  • 12 篇 mainprice jim
  • 12 篇 marc toussaint
  • 9 篇 zhou siqi
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 6 篇 angela p. schoel...
  • 6 篇 brunke lukas
  • 6 篇 kratzer philipp
  • 5 篇 siqi zhou
  • 5 篇 danny driess
  • 5 篇 hartmann valenti...
  • 4 篇 ozgur s. oguz
  • 4 篇 jim mainprice
  • 4 篇 schaal stefan
  • 4 篇 oh yoojin
  • 4 篇 bennewitz maren
  • 3 篇 pan sicong
  • 3 篇 heins adam

语言

  • 111 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Learning Systems and Robotics Lab"
118 条 记 录,以下是21-30 订阅
排序:
learning efficient constraint graph sampling for robotic sequential manipulation
arXiv
收藏 引用
arXiv 2020年
作者: Ortiz-Haro, Joaquim Hartmann, Valentin N. Oguz, Ozgur S. Toussaint, Marc Machine Learning & Robotics Lab. University of Stuttgart Germany Max Planck Institute for Intelligent Systems Germany Learning and Intelligent Systems Lab. TU Berlin Germany
Efficient sampling from constraint manifolds, and thereby generating a diverse set of solutions for feasibility problems, is a fundamental challenge. We consider the case where a problem is factored, that is, the unde... 详细信息
来源: 评论
Probabilistic Framework for Constrained Manipulations and Task and Motion Planning under Uncertainty
arXiv
收藏 引用
arXiv 2020年
作者: Ha, Jung-Su Driess, Danny Toussaint, Marc Machine Learning & Robotics Lab University Stuttgart Max Planck Institute for Intelligent Systems Stuttgart Germany
— Logic-Geometric Programming (LGP) is a powerful motion and manipulation planning framework, which represents hierarchical structure using logic rules that describe discrete aspects of problems, e.g., touch, grasp, ... 详细信息
来源: 评论
A Probabilistic Framework for Constrained Manipulations and Task and Motion Planning under Uncertainty
A Probabilistic Framework for Constrained Manipulations and ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Jung-Su Ha Danny Driess Marc Toussaint Machine Learning & Robotics Lab University Stuttgart and with the Max Planck Institute for Intelligent Systems Stuttgart Germany
Logic-Geometric Programming (LGP) is a powerful motion and manipulation planning framework, which represents hierarchical structure using logic rules that describe discrete aspects of problems, e.g., touch, grasp, hit... 详细信息
来源: 评论
Automated Planning Domain Inference for Task and Motion Planning
arXiv
收藏 引用
arXiv 2024年
作者: Huang, Jinbang Tao, Allen Marco, Rozilyn Bogdanovic, Miroslav Kelly, Jonathan Shkurti, Florian Space and Terrestrial Autonomous Systems Lab Canada Robot Vision and Learning Lab University of Toronto Robotics Institute Canada
Task and motion planning (TAMP) frameworks address long and complex planning problems by integrating high-level task planners with low-level motion planners. However, existing TAMP methods rely heavily on the manual d... 详细信息
来源: 评论
Deep visual reasoning: learning to predict action sequences for task and motion planning from an initial scene image
arXiv
收藏 引用
arXiv 2020年
作者: Driess, Danny Ha, Jung-Su Toussaint, Marc Machine Learning and Robotics Lab University of Stuttgart Germany Max-Planck Institute for Intelligent Systems Stuttgart Germany Learning and Intelligent Systems Group TU Berlin Germany
In this paper, we propose a deep convolutional recurrent neural network that predicts action sequences for task and motion planning (TAMP) from an initial scene image. Typical TAMP problems are formalized by combining... 详细信息
来源: 评论
Plan-based relaxed reward shaping for goal-directed tasks
arXiv
收藏 引用
arXiv 2021年
作者: Schubert, Ingmar Oguz, Ozgur S. Toussaint, Marc Learning and Intelligent Systems Group TU Berlin Germany Max Planck Institute for Intelligent Systems Stuttgart Germany Machine Learning and Robotics Lab University of Stuttgart Germany
In high-dimensional state spaces, the usefulness of Reinforcement learning (RL) is limited by the problem of exploration. This issue has been addressed using potential-based reward shaping (PB-RS) previously. In the p... 详细信息
来源: 评论
Is Data All That Matters? the Role of Control Frequency for learning-Based Sampled-Data Control of Uncertain systems
Is Data All That Matters? the Role of Control Frequency for ...
收藏 引用
American Control Conference (ACC)
作者: Ralf Römer Lukas Brunke Siqi Zhou Angela P. Schoellig Learning Systems and Robotics Lab (***) School of Computation Information and Technology and the Munich Institute for Robotics and Machine Intelligence (MIRMI) Technical University of Munich Germany
learning models or control policies from data has become a powerful tool to improve the performance of uncertain systems. While a strong focus has been placed on increasing the amount and quality of data to improve pe... 详细信息
来源: 评论
Natural Gradient Shared Control
Natural Gradient Shared Control
收藏 引用
IEEE International Workshop on Robot and Human Communication (ROMAN)
作者: Yoojin Oh Shao-Wen Wu Marc Toussaint Jim Mainprice Machine Learning and Robotics Lab University of Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Berlin Germany Max Planck Institute for Intelligent Systems IS-MPI Tübingen Germany
We propose a formalism for shared control, which is the problem of defining a policy that blends user control and autonomous control. The challenge posed by the shared autonomy system is to maintain user control autho...
来源: 评论
Natural gradient shared control
arXiv
收藏 引用
arXiv 2020年
作者: Oh, Yoojin Wu, Shao-Wen Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Berlin Germany Max Planck Institute for Intelligent Systems IS-MPI Tübingen Germany
We propose a formalism for shared control, which is the problem of defining a policy that blends user control and autonomous control. The challenge posed by the shared autonomy system is to maintain user control autho... 详细信息
来源: 评论
Safety Filtering While Training: Improving the Performance and Sample Efficiency of Reinforcement learning Agents
arXiv
收藏 引用
arXiv 2024年
作者: Bejarano, Federico Pizarro Brunke, Lukas Schoellig, Angela P. The Learning Systems and Robotics Lab University of Toronto Canada The University of Toronto Robotics Institute The Vector Institute for Artificial Intelligence Toronto Canada Germany
Reinforcement learning (RL) controllers are flexible and performant but rarely guarantee safety. Safety filters impart hard safety guarantees to RL controllers while maintaining flexibility. However, safety filters ca... 详细信息
来源: 评论