咨询与建议

限定检索结果

文献类型

  • 72 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 118 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 58 篇 计算机科学与技术...
    • 57 篇 控制科学与工程
    • 56 篇 软件工程
    • 17 篇 生物工程
    • 14 篇 机械工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 力学(可授工学、理...
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 5 篇 化学工程与技术
    • 5 篇 交通运输工程
    • 4 篇 光学工程
    • 3 篇 信息与通信工程
    • 3 篇 安全科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
  • 46 篇 理学
    • 22 篇 数学
    • 15 篇 生物学
    • 14 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 8 篇 系统科学
    • 6 篇 化学
  • 9 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 6 篇 医学
    • 6 篇 基础医学(可授医学...
    • 6 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学

主题

  • 13 篇 motion planning
  • 8 篇 planning
  • 5 篇 reinforcement le...
  • 5 篇 deep learning
  • 5 篇 robots
  • 5 篇 trajectory
  • 4 篇 measurement
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 safety
  • 3 篇 optimization
  • 3 篇 uncertainty
  • 2 篇 tools
  • 2 篇 conferences
  • 2 篇 programming
  • 2 篇 task analysis
  • 2 篇 three-dimensiona...
  • 2 篇 continuous time ...
  • 2 篇 buildings
  • 2 篇 stability analys...

机构

  • 23 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 7 篇 machine learning...
  • 6 篇 the learning sys...
  • 6 篇 max planck insti...
  • 4 篇 vector institute...
  • 4 篇 bosch center for...
  • 4 篇 technical univer...
  • 4 篇 the university o...
  • 4 篇 autonomous syste...
  • 4 篇 max planck insti...
  • 4 篇 the vector insti...
  • 4 篇 max planck insti...
  • 3 篇 abb corporate re...
  • 3 篇 university of ta...
  • 3 篇 max-planck insti...
  • 3 篇 max plank eth ce...
  • 3 篇 division of robo...
  • 2 篇 school of mathem...

作者

  • 27 篇 toussaint marc
  • 17 篇 schoellig angela...
  • 12 篇 mainprice jim
  • 12 篇 marc toussaint
  • 9 篇 zhou siqi
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 6 篇 angela p. schoel...
  • 6 篇 brunke lukas
  • 6 篇 kratzer philipp
  • 5 篇 siqi zhou
  • 5 篇 danny driess
  • 5 篇 hartmann valenti...
  • 4 篇 ozgur s. oguz
  • 4 篇 jim mainprice
  • 4 篇 schaal stefan
  • 4 篇 oh yoojin
  • 4 篇 bennewitz maren
  • 3 篇 pan sicong
  • 3 篇 heins adam

语言

  • 111 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Learning Systems and Robotics Lab"
118 条 记 录,以下是31-40 订阅
排序:
Multi-Step Model Predictive Safety Filters: Reducing Chattering by Increasing the Prediction Horizon
arXiv
收藏 引用
arXiv 2023年
作者: Bejarano, Federico Pizarro Brunke, Lukas Schoellig, Angela P. The Learning Systems and Robotics Lab University of Toronto Canada The University of Toronto Robotics Institute The Vector Institute for Artificial Intelligence in Toronto Canada Germany
learning-based controllers have demonstrated superior performance compared to classical controllers in various tasks. However, providing safety guarantees is not trivial. Safety, the satisfaction of state and input co... 详细信息
来源: 评论
An Interior Point Method Solving Motion Planning Problems with Narrow Passages
arXiv
收藏 引用
arXiv 2020年
作者: Mainprice, Jim Ratliff, Nathan Toussaint, Marc Schaal, Stefan Machine Learning and Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems IS-MPITübingen & Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Berlin Germany
Algorithmic solutions for the motion planning problem have been investigated for five decades. Since the development of A* in 1969 many approaches have been investigated, traditionally classified as either grid decomp... 详细信息
来源: 评论
PandaNet: Anchor-Based Single-Shot Multi-Person 3D Pose Estimation
PandaNet: Anchor-Based Single-Shot Multi-Person 3D Pose Esti...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Abdallah Benzine Florian Chabot Bertrand Luvison Quoc Cuong Pham Catherine Achard CEA LIST Vision and Learning Lab for Scene Analysis Sorbonne University CNRS Institute for Intelligent Systems and Robotics
Recently, several deep learning models have been proposed for 3D human pose estimation. Nevertheless, most of these approaches only focus on the single-person case or estimate 3D pose of a few people at high resolutio... 详细信息
来源: 评论
Deep 6-DoF tracking of unknown objects for reactive grasping
arXiv
收藏 引用
arXiv 2021年
作者: Tuscher, Marc Hörz, Julian Driess, Danny Toussaint, Marc Sereact Germany Machine Learning and Robotics Lab University of Stuttgart Germany Max-Planck Institute for Intelligent Systems Stuttgart Germany Learning and Intelligent Systems TU Berlin Germany
Robotic manipulation of unknown objects is an important field of research. Practical applications occur in many real-world settings where robots need to interact with an unknown environment. We tackle the problem of r... 详细信息
来源: 评论
learning to arbitrate human and robot control using disagreement between sub-policies
arXiv
收藏 引用
arXiv 2021年
作者: Oh, Yoojin Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Berlin Germany Max Planck Institute for Intelligent Systems MPI-IS Tübingen/Stuttgart Germany
In the context of teleoperation, arbitration refers to deciding how to blend between human and autonomous robot commands. We present a reinforcement learning solution that learns an optimal arbitration strategy that a... 详细信息
来源: 评论
An Interior Point Method Solving Motion Planning Problems with Narrow Passages
An Interior Point Method Solving Motion Planning Problems wi...
收藏 引用
IEEE International Workshop on Robot and Human Communication (ROMAN)
作者: Jim Mainprice Nathan Ratliff Marc Toussaint Stefan Schaal Machine Learning and Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems IS-MPI Tübingen & Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Berlin Germany
Algorithmic solutions for the motion planning problem have been investigated for five decades. Since the development of A* in 1969 many approaches have been investigated, traditionally classified as either grid decomp...
来源: 评论
Deep Visual Heuristics: learning Feasibility of Mixed-Integer Programs for Manipulation Planning
Deep Visual Heuristics: Learning Feasibility of Mixed-Intege...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Danny Driess Ozgur Oguz Jung-Su Ha Marc Toussaint Machine Learning and Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems Stuttgart Germany
In this paper, we propose a deep neural network that predicts the feasibility of a mixed-integer program from visual input for robot manipulation planning. Integrating learning into task and motion planning is challen... 详细信息
来源: 评论
Planning Coordinated Human-Robot Motions with Neural Network Full-Body Prediction Models
arXiv
收藏 引用
arXiv 2022年
作者: Kratzer, Philipp Toussaint, Marc Mainprice, Jim The Machine Learning and Robotics Lab University of Stuttgart Germany The Humans to Robots Motions Research Group University of Stuttgart Germany The Learning and Intelligent Systems Lab TU Berlin Germany
Numerical optimization has become a popular approach to plan smooth motion trajectories for robots. However, when sharing space with humans, balancing properly safety, comfort and efficiency still remains challenging.... 详细信息
来源: 评论
Practical Considerations for Discrete-Time Implementations of Continuous-Time Control Barrier Function-Based Safety Filters
arXiv
收藏 引用
arXiv 2024年
作者: Brunke, Lukas Zhou, Siqi Che, Mingxuan Schoellig, Angela P. The Learning Systems and Robotics Lab The Technical University of Munich Germany The University of Toronto Canada The University of Toronto Robotics Institute The Vector Institute for Artificial Intelligence Canada
Safety filters based on control barrier functions (CBFs) have become a popular method to guarantee safety for uncertified control policies, e.g., as resulting from reinforcement learning. Here, safety is defined as st... 详细信息
来源: 评论
Distilling motion planner augmented policies into visual control policies for robot manipulation
arXiv
收藏 引用
arXiv 2021年
作者: Liu, I-Chun Arthur Uppal, Shagun Sukhatme, Gaurav S. Lim, Joseph J. Englert, Peter Lee, Youngwoon Cognitive Learning for Vision and Robotics Lab University of Southern California Robotic Embedded Systems Laboratory University of Southern California
learning complex manipulation tasks in realistic, obstructed environments is a challenging problem due to hard exploration in the presence of obstacles and high-dimensional visual observations. Prior work tackles the ... 详细信息
来源: 评论