咨询与建议

限定检索结果

文献类型

  • 72 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 118 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 58 篇 计算机科学与技术...
    • 57 篇 控制科学与工程
    • 56 篇 软件工程
    • 17 篇 生物工程
    • 14 篇 机械工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 力学(可授工学、理...
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 5 篇 化学工程与技术
    • 5 篇 交通运输工程
    • 4 篇 光学工程
    • 3 篇 信息与通信工程
    • 3 篇 安全科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
  • 46 篇 理学
    • 22 篇 数学
    • 15 篇 生物学
    • 14 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 8 篇 系统科学
    • 6 篇 化学
  • 9 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 6 篇 医学
    • 6 篇 基础医学(可授医学...
    • 6 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学

主题

  • 13 篇 motion planning
  • 8 篇 planning
  • 5 篇 reinforcement le...
  • 5 篇 deep learning
  • 5 篇 robots
  • 5 篇 trajectory
  • 4 篇 measurement
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 safety
  • 3 篇 optimization
  • 3 篇 uncertainty
  • 2 篇 tools
  • 2 篇 conferences
  • 2 篇 programming
  • 2 篇 task analysis
  • 2 篇 three-dimensiona...
  • 2 篇 continuous time ...
  • 2 篇 buildings
  • 2 篇 stability analys...

机构

  • 23 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 7 篇 machine learning...
  • 6 篇 the learning sys...
  • 6 篇 max planck insti...
  • 4 篇 vector institute...
  • 4 篇 bosch center for...
  • 4 篇 technical univer...
  • 4 篇 the university o...
  • 4 篇 autonomous syste...
  • 4 篇 max planck insti...
  • 4 篇 the vector insti...
  • 4 篇 max planck insti...
  • 3 篇 abb corporate re...
  • 3 篇 university of ta...
  • 3 篇 max-planck insti...
  • 3 篇 max plank eth ce...
  • 3 篇 division of robo...
  • 2 篇 school of mathem...

作者

  • 27 篇 toussaint marc
  • 17 篇 schoellig angela...
  • 12 篇 mainprice jim
  • 12 篇 marc toussaint
  • 9 篇 zhou siqi
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 6 篇 angela p. schoel...
  • 6 篇 brunke lukas
  • 6 篇 kratzer philipp
  • 5 篇 siqi zhou
  • 5 篇 danny driess
  • 5 篇 hartmann valenti...
  • 4 篇 ozgur s. oguz
  • 4 篇 jim mainprice
  • 4 篇 schaal stefan
  • 4 篇 oh yoojin
  • 4 篇 bennewitz maren
  • 3 篇 pan sicong
  • 3 篇 heins adam

语言

  • 111 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Learning Systems and Robotics Lab"
118 条 记 录,以下是41-50 订阅
排序:
PandaNet : Anchor-Based Single-Shot Multi-Person 3D Pose Estimation
arXiv
收藏 引用
arXiv 2021年
作者: Benzine, Abdallah Chabot, Florian Luvison, Bertrand Pham, Quoc Cuong Achard, Catherine CEA LIST Vision and Learning Lab for Scene Analysis Sorbonne University CNRS Institute for Intelligent Systems and Robotics France
Recently, several deep learning models have been proposed for 3D human pose estimation. Nevertheless, most of these approaches only focus on the single-person case or estimate 3D pose of a few people at high resolutio... 详细信息
来源: 评论
Leveraging Pretrained Latent Representations for Few-Shot Imitation learning on an Anthropomorphic Robotic Hand
Leveraging Pretrained Latent Representations for Few-Shot Im...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Davide Liconti Yasunori Toshimitsu Robert Katzschmann D-MAVT Soft Robotics Lab IRIS ETH Zurich Switzerland Max Plank ETH Center for Learning Systems
In the context of imitation learning applied to anthropomorphic robotic hands, the high complexity of the systems makes learning complex manipulation tasks challenging. However, the numerous datasets depicting human h... 详细信息
来源: 评论
Multi-Step Model Predictive Safety Filters: Reducing Chattering by Increasing the Prediction Horizon
Multi-Step Model Predictive Safety Filters: Reducing Chatter...
收藏 引用
IEEE Conference on Decision and Control
作者: Federico Pizarro Bejarano Lukas Brunke Angela P. Schoellig the Learning Systems and Robotics Lab University of Toronto Robotics Institute and the Vector Institute for Artificial Intelligence Toronto Canada Technical University of Munich and the Munich Institute for Robotics and Machine Intelligence (MIRMI) Germany
learning-based controllers have demonstrated su-perior performance compared to classical controllers in various tasks. However, providing safety guarantees is not trivial. Safety, the satisfaction of state and input c...
来源: 评论
Long-Horizon Multi-Robot Rearrangement Planning for Construction Assembly
arXiv
收藏 引用
arXiv 2021年
作者: Hartmann, Valentin N. Orthey, Andreas Driess, Danny Oguz, Ozgur S. Toussaint, Marc Machine Learning & Robotics Lab University of Stuttgart Germany Learning and Intelligent Systems Group TU Berlin Germany Department of Computer Engineering Bilkent University Turkey
Robotic assembly planning enables architects to explicitly account for the assembly process during the design phase, and enables efficient building methods that profit from the robots' different capabilities. Prev... 详细信息
来源: 评论
Energy-Optimized Planning in Non-Uniform Wind Fields with Fixed-Wing Aerial Vehicles
Energy-Optimized Planning in Non-Uniform Wind Fields with Fi...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and systems (IROS)
作者: Yufei Duan Florian Achermann Jaeyoung Lim Roland Siegwart Robotics Perception and Learning Lab KTH Royal Institude of Technology Stockholm Autonomous Systems Lab ETH Zürich Zürich Switzerland
Fixed-wing small uncrewed aerial vehicles (sUAVs) possess the capability to remain airborne for extended durations and traverse vast distances. However, their operation is susceptible to wind conditions, particularly ... 详细信息
来源: 评论
Motion prediction with recurrent neural network dynamical models and trajectory optimization
arXiv
收藏 引用
arXiv 2019年
作者: Kratzer, Philipp Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems IS-MPI Tübingen Germany
Predicting human motion in unstructured and dynamic environments is difficult as humans naturally exhibit complex behaviors that can change drastically from one environment to the next. In order to alleviate this issu... 详细信息
来源: 评论
Practical Considerations for Discrete-Time Implementations of Continuous-Time Control Barrier Function-Based Safety Filters
Practical Considerations for Discrete-Time Implementations o...
收藏 引用
American Control Conference (ACC)
作者: Lukas Brunke Siqi Zhou Mingxuan Che Angela P. Schoellig Learning Systems and Robotics Lab Technical University of Munich Germany University of Toronto Canada Munich Institute of Robotics and Machine Intelligence (MIRMI) the University of Toronto Robotics Institute and the Vector Institute for Artificial Intelligence
Safety filters based on control barrier functions (CBFs) have become a popular method to guarantee safety for uncertified control policies, e.g., as resulting from reinforcement learning. Here, safety is defined as st... 详细信息
来源: 评论
learning arbitration for shared autonomy by hindsight data aggregation
arXiv
收藏 引用
arXiv 2019年
作者: Oh, Yoojin Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems MPI-IS Tübingen Germany
In this paper we present a framework for the teleoperation of pick-and-place tasks. We define a shared control policy that allows to blend between direct user control and autonomous control based on user intent infere... 详细信息
来源: 评论
Prediction of human full-body movements with motion optimization and recurrent neural networks
arXiv
收藏 引用
arXiv 2019年
作者: Kratzer, Philipp Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems IS-MPI Tübingen Germany
Human movement prediction is difficult as humans naturally exhibit complex behaviors that can change drastically from one environment to the next. In order to alleviate this issue, we propose a prediction framework th... 详细信息
来源: 评论
Anticipating Human Intention for Full-Body Motion Prediction in Object Grasping and Placing Tasks
Anticipating Human Intention for Full-Body Motion Prediction...
收藏 引用
IEEE International Workshop on Robot and Human Communication (ROMAN)
作者: Philipp Kratzer Niteesh Balachandra Midlagajni Marc Toussaint Jim Mainprice Machine Learning and Robotics Lab University of Stuttgart Germany Humans to Robots Motions Research Group HRM University of Stuttgart Germany Learning and Intelligent Systems Lab Technical University of Berlin Germany
Motion prediction in unstructured environments is a difficult problem and is essential for safe and efficient human-robot space sharing and collaboration. In this work, we focus on manipulation movements in environmen...
来源: 评论