咨询与建议

限定检索结果

文献类型

  • 72 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 118 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 58 篇 计算机科学与技术...
    • 57 篇 控制科学与工程
    • 56 篇 软件工程
    • 17 篇 生物工程
    • 14 篇 机械工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 力学(可授工学、理...
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 5 篇 化学工程与技术
    • 5 篇 交通运输工程
    • 4 篇 光学工程
    • 3 篇 信息与通信工程
    • 3 篇 安全科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
  • 46 篇 理学
    • 22 篇 数学
    • 15 篇 生物学
    • 14 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 8 篇 系统科学
    • 6 篇 化学
  • 9 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 6 篇 医学
    • 6 篇 基础医学(可授医学...
    • 6 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学

主题

  • 13 篇 motion planning
  • 8 篇 planning
  • 5 篇 reinforcement le...
  • 5 篇 deep learning
  • 5 篇 robots
  • 5 篇 trajectory
  • 4 篇 measurement
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 safety
  • 3 篇 optimization
  • 3 篇 uncertainty
  • 2 篇 tools
  • 2 篇 conferences
  • 2 篇 programming
  • 2 篇 task analysis
  • 2 篇 three-dimensiona...
  • 2 篇 continuous time ...
  • 2 篇 buildings
  • 2 篇 stability analys...

机构

  • 23 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 7 篇 machine learning...
  • 6 篇 the learning sys...
  • 6 篇 max planck insti...
  • 4 篇 vector institute...
  • 4 篇 bosch center for...
  • 4 篇 technical univer...
  • 4 篇 the university o...
  • 4 篇 autonomous syste...
  • 4 篇 max planck insti...
  • 4 篇 the vector insti...
  • 4 篇 max planck insti...
  • 3 篇 abb corporate re...
  • 3 篇 university of ta...
  • 3 篇 max-planck insti...
  • 3 篇 max plank eth ce...
  • 3 篇 division of robo...
  • 2 篇 school of mathem...

作者

  • 27 篇 toussaint marc
  • 17 篇 schoellig angela...
  • 12 篇 mainprice jim
  • 12 篇 marc toussaint
  • 9 篇 zhou siqi
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 6 篇 angela p. schoel...
  • 6 篇 brunke lukas
  • 6 篇 kratzer philipp
  • 5 篇 siqi zhou
  • 5 篇 danny driess
  • 5 篇 hartmann valenti...
  • 4 篇 ozgur s. oguz
  • 4 篇 jim mainprice
  • 4 篇 schaal stefan
  • 4 篇 oh yoojin
  • 4 篇 bennewitz maren
  • 3 篇 pan sicong
  • 3 篇 heins adam

语言

  • 111 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Learning Systems and Robotics Lab"
118 条 记 录,以下是51-60 订阅
排序:
The Markov decision process extraction network
The Markov decision process extraction network
收藏 引用
18th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine learning, ESANN 2010
作者: Duell, Siegmund Hans, Alexander Udluft, Steffen Siemens AG Corporate Research and Technologies Learning Systems Otto-Hahn-Ring 6 D-81739 Munich Germany Berlin University of Technology Machine Learning Franklinstr. 28-29 D-10587 Berlin Germany Ilmenau University of Technology Neuroinformatics and Cognitive Robotics Lab P.O.Box 100565 D-98684 Ilmenau Germany
This paper presents the Markov decision process extraction network, which is a data-efficient, automatic state estimation approach for discrete-time reinforcement learning (RL) based on recurrent neural networks. The ... 详细信息
来源: 评论
Anticipating Human Intention for Full-Body Motion Prediction in Object Grasping and Placing Tasks
arXiv
收藏 引用
arXiv 2020年
作者: Kratzer, Philipp Midlagajni, Niteesh Balachandra Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Germany Humans to Robots Motions Research Group HRM University of Stuttgart Germany Learning and Intelligent Systems Lab Technical University of Berlin Germany
Motion prediction in unstructured environments is a difficult problem and is essential for safe and efficient human-robot space sharing and collaboration. In this work, we focus on manipulation movements in environmen... 详细信息
来源: 评论
Control-Barrier-Aided Teleoperation with Visual-Inertial SLAM for Safe MAV Navigation in Complex Environments
Control-Barrier-Aided Teleoperation with Visual-Inertial SLA...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Siqi Zhou Sotiris Papatheodorou Stefan Leutenegger Angela P. Schoellig Learning Systems and Robotics Lab School of Computation Information and Technology Technical University of Munich Munich Institute of Robotics and Machine Intelligence (MIRMI) Smart Robotics Lab School of Computation Information and Technology Technical University of Munich Department of Computing Smart Robotics Lab Imperial College London
In this paper, we consider a Micro Aerial Vehicle (MAV) system teleoperated by a non-expert and introduce a perceptive safety filter that leverages Control Barrier Functions (CBFs) in conjunction with Visual-Inertial ... 详细信息
来源: 评论
Safe Stop Trajectory Planning for Highly Automated Vehicles: An Optimal Control Problem Formulation
Safe Stop Trajectory Planning for Highly Automated Vehicles:...
收藏 引用
2018 IEEE Intelligent Vehicles Symposium, IV 2018
作者: Svensson, Lars Masson, Lola Mohan, Naveen Ward, Erik Brenden, Anna Pernestål Feng, Lei Törngren, Martin Mechatronics and Embedded Control Systems KTH Royal Institute of Technology StockholmSE-10044 Sweden LAAS-CNRS University of Toulouse Toulouse France Robotics Perception and Learning KTH Royal Institute of Technology Sweden Integrated Transport Research Lab KTH Royal Institute of Technology Sweden
Highly automated road vehicles need the capability of stopping safely in a situation that disrupts continued normal operation, e.g. due to internal system faults. Motion planning for safe stop differs from nominal mot... 详细信息
来源: 评论
Leveraging Pretrained Latent Representations for Few-Shot Imitation learning on a Dexterous Robotic Hand
arXiv
收藏 引用
arXiv 2024年
作者: Liconti, Davide Toshimitsu, Yasunori Katzschmann, Robert Soft Robotics Lab. IRIS D-MAVT ETH Zurich Switzerland Max Plank ETH Center for Learning Systems Switzerland
In the context of imitation learning applied to dexterous robotic hands, the high complexity of the systems makes learning complex manipulation tasks challenging. However, the numerous datasets depicting human hands i... 详细信息
来源: 评论
Describing Physics For Physical Reasoning: Force-based Sequential Manipulation Planning
arXiv
收藏 引用
arXiv 2020年
作者: Toussaint, Marc Ha, Jung-Su Driess, Danny Machine Learning & Robotics Lab University Stuttgart Stuttgart70569 Germany Max Planck Institute for Intelligent Systems Stuttgart70569 Germany
Physical reasoning is a core aspect of intelligence in animals and humans. A central question is what model should be used as a basis for reasoning. Existing work considered models ranging from intuitive physics and p...
来源: 评论
Latent Action Priors for Locomotion with Deep Reinforcement learning
arXiv
收藏 引用
arXiv 2024年
作者: Hausdörfer, Oliver von Rohr, Alexander Lefort, Éric Schoellig, Angela P. The Technical University of Munich Germany TUM School of Computation Information and Technology Department of Computer Engineering Learning Systems and Robotics Lab Germany Munich Institute of Robotics and Machine Intelligence Germany
Deep Reinforcement learning (DRL) enables robots to learn complex behaviors through interaction with the environment. However, due to the unrestricted nature of the learning algorithms, the resulting solutions are oft... 详细信息
来源: 评论
Optimized Control Invariance Conditions for Uncertain Input-Constrained Nonlinear Control systems
arXiv
收藏 引用
arXiv 2023年
作者: Brunke, Lukas Zhou, Siqi Che, Mingxuan Schoellig, Angela P. The Learning Systems and Robotics Lab The Technical University of Munich Germany Germany The University of Toronto Institute for Aerospace Studies The University of Toronto Robotics Institute The Vector Institute for Artificial Intelligence Canada
Providing safety guarantees for learning-based controllers is important for real-world applications. One approach to realizing safety for arbitrary control policies is safety filtering. If necessary, the filter modifi... 详细信息
来源: 评论
Control-Barrier-Aided Teleoperation with Visual-Inertial SLAM for Safe MAV Navigation in Complex Environments
arXiv
收藏 引用
arXiv 2024年
作者: Zhou, Siqi Papatheodorou, Sotiris Leutenegger, Stefan Schoellig, Angela P. Learning Systems and Robotics Lab School of Computation Information and Technology Technical University of Munich Germany Smart Robotics Lab School of Computation Information and Technology Technical University of Munich Germany Smart Robotics Lab Department of Computing Imperial College London United Kingdom Germany
In this paper, we consider a Micro Aerial Vehicle (MAV) system teleoperated by a non-expert and introduce a perceptive safety filter that leverages Control Barrier Functions (CBFs) in conjunction with Visual-Inertial ... 详细信息
来源: 评论
Understanding the geometry of workspace obstacles in Motion Optimization
Understanding the geometry of workspace obstacles in Motion ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Nathan Ratliff Marc Toussaint Stefan Schaal Autonomous Motion Department Max Planck Institute for Intelligent Systems Tübingen Germany Machine Learning and Robotics Lab University of Stuttgart Germany
What is it that makes movement around obstacles hard? The answer seems clear: obstacles contort the geometry of the workspace and make it difficult to leverage what we consider easy and intuitive straight-line Cartesi... 详细信息
来源: 评论