咨询与建议

限定检索结果

文献类型

  • 72 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 118 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 58 篇 计算机科学与技术...
    • 57 篇 控制科学与工程
    • 56 篇 软件工程
    • 17 篇 生物工程
    • 14 篇 机械工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 力学(可授工学、理...
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 5 篇 化学工程与技术
    • 5 篇 交通运输工程
    • 4 篇 光学工程
    • 3 篇 信息与通信工程
    • 3 篇 安全科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
  • 46 篇 理学
    • 22 篇 数学
    • 15 篇 生物学
    • 14 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 8 篇 系统科学
    • 6 篇 化学
  • 9 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 6 篇 医学
    • 6 篇 基础医学(可授医学...
    • 6 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学

主题

  • 13 篇 motion planning
  • 8 篇 planning
  • 5 篇 reinforcement le...
  • 5 篇 deep learning
  • 5 篇 robots
  • 5 篇 trajectory
  • 4 篇 measurement
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 safety
  • 3 篇 optimization
  • 3 篇 uncertainty
  • 2 篇 tools
  • 2 篇 conferences
  • 2 篇 programming
  • 2 篇 task analysis
  • 2 篇 three-dimensiona...
  • 2 篇 continuous time ...
  • 2 篇 buildings
  • 2 篇 stability analys...

机构

  • 23 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 7 篇 machine learning...
  • 6 篇 the learning sys...
  • 6 篇 max planck insti...
  • 4 篇 vector institute...
  • 4 篇 bosch center for...
  • 4 篇 technical univer...
  • 4 篇 the university o...
  • 4 篇 autonomous syste...
  • 4 篇 max planck insti...
  • 4 篇 the vector insti...
  • 4 篇 max planck insti...
  • 3 篇 abb corporate re...
  • 3 篇 university of ta...
  • 3 篇 max-planck insti...
  • 3 篇 max plank eth ce...
  • 3 篇 division of robo...
  • 2 篇 school of mathem...

作者

  • 27 篇 toussaint marc
  • 17 篇 schoellig angela...
  • 12 篇 mainprice jim
  • 12 篇 marc toussaint
  • 9 篇 zhou siqi
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 6 篇 angela p. schoel...
  • 6 篇 brunke lukas
  • 6 篇 kratzer philipp
  • 5 篇 siqi zhou
  • 5 篇 danny driess
  • 5 篇 hartmann valenti...
  • 4 篇 ozgur s. oguz
  • 4 篇 jim mainprice
  • 4 篇 schaal stefan
  • 4 篇 oh yoojin
  • 4 篇 bennewitz maren
  • 3 篇 pan sicong
  • 3 篇 heins adam

语言

  • 111 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Learning Systems and Robotics Lab"
118 条 记 录,以下是61-70 订阅
排序:
Recurrent Kaiman networks: Factorized inference in high-dimensional deep feature spaces  36
Recurrent Kaiman networks: Factorized inference in high-dime...
收藏 引用
36th International Conference on Machine learning, ICML 2019
作者: Becker, Philipp Pandya, Harit Gebhardt, Gregor Zhao, Cheng Taylor, James Neumann, Gerhard Computational Learning for Autonomous Systems TU Darmstadt Darmstadt Germany Bosch Center for Artificial Intelligence Renningen Germany University of Tübingen Tübingen Germany Lincoln Center for Autonomous Systems University of Lincoln Lincoln United Kingdom Extreme Robotics Lab University of Birmingham Birmingham United Kingdom Engineering Department Lancaster University Lancaster United Kingdom
In order to integrate uncertainty estimates into deep time-series modelling, Kaiman Filters (KFs) (Kaiman et al., 1960) have been integrated with deep learning models, however, such approaches typically rely on approx... 详细信息
来源: 评论
Augmenting Human Policies using Riemannian Metrics for Human-Robot Shared Control
Augmenting Human Policies using Riemannian Metrics for Human...
收藏 引用
IEEE International Workshop on Robot and Human Communication (ROMAN)
作者: Yoojin Oh Jean-Claude Passy Jim Mainprice Machine Learning and Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems Stuttgart Germany Max Planck Institute for Intelligent Systems Tübingen Germany
We present a shared control framework for teleoperation that combines the human and autonomous robot agents operating in different dimension spaces. The shared control problem is an optimization problem to maximize th...
来源: 评论
Dynamic Electromagnetic Navigation
arXiv
收藏 引用
arXiv 2024年
作者: Zughaibi, Jasan Nelson, Bradley J. Muehlebach, Michael Multi-Scale Robotics Lab ETH Zurich Zurich8092 Switzerland Learning and Dynamical Systems Group Max Planck Institute for Intelligent Systems Tübingen72076 Germany
Magnetic navigation offers wireless control over magnetic objects, which has important medical applications, such as targeted drug delivery and minimally invasive surgery. Magnetic navigation systems are categorized i... 详细信息
来源: 评论
Motion planner augmented reinforcement learning for robot manipulation in obstructed environments
arXiv
收藏 引用
arXiv 2020年
作者: Yamada, Jun Lee, Youngwoon Salhotra, Gautam Pertsch, Karl Pflueger, Max Sukhatme, Gaurav S. Lim, Joseph J. Englert, Peter Cognitive Learning for Vision and Robotics Lab United States Robotic Embedded Systems Laboratory Department of Computer Science University of Southern California United States
Deep reinforcement learning (RL) agents are able to learn contact-rich manipulation tasks by maximizing a reward signal, but require large amounts of experience, especially in environments with many obstacles that com... 详细信息
来源: 评论
Keep it Upright: Model Predictive Control for Nonprehensile Object Transportation with Obstacle Avoidance on a Mobile Manipulator
arXiv
收藏 引用
arXiv 2023年
作者: Heins, Adam Schoellig, Angela P. The Learning Systems and Robotics Lab The Technical University of Munich Germany The University of Toronto Institute for Aerospace Studies Canada The Vector Institute for Artificial Intelligence Canada
We consider a nonprehensile manipulation task in which a mobile manipulator must balance objects on its end effector without grasping them-known as the waiter's problem-and move to a desired location while avoidin... 详细信息
来源: 评论
Force Push: Robust Single-Point Pushing with Force Feedback
arXiv
收藏 引用
arXiv 2024年
作者: Heins, Adam Schoellig, Angela P. The Learning Systems and Robotics Lab the Technical University of Munich Germany The University of Toronto Institute for Aerospace Studies Canada the Vector Institute for Artificial Intelligence Germany
We present a controller for quasistatic robotic planar pushing with single-point contact using only force feedback to sense the pushed object. We consider an omnidirectional mobile robot pushing an object (the "s... 详细信息
来源: 评论
Robust Nonprehensile Object Transportation with Uncertain Inertial Parameters
arXiv
收藏 引用
arXiv 2024年
作者: Heins, Adam Schoellig, Angela P. The Learning Systems and Robotics Lab The Technical University of Munich Germany The University of Toronto Institute for Aerospace Studies Canada The Vector Institute for Artificial Intelligence Germany
We consider the nonprehensile object transportation task known as the waiter’s problem—in which a robot must move an object balanced on a tray from one location to another—when the balanced object has uncertain ine... 详细信息
来源: 评论
Energy-Optimized Planning in Non-Uniform Wind Fields with Fixed-Wing Aerial Vehicles
arXiv
收藏 引用
arXiv 2024年
作者: Duan, Yufei Achermann, Florian Lim, Jaeyoung Siegwart, Roland Robotics Perception and Learning Lab KTH Royal Institude of Technology Stockholm114 28 Sweden Autonomous Systems Lab ETH Zürich Zürich8092 Switzerland
Fixed-wing small uncrewed aerial vehicles (sUAVs) possess the capability to remain airborne for extended durations and traverse vast distances. However, their operation is susceptible to wind conditions, particularly ... 详细信息
来源: 评论
MoGaze: A dataset of full-body motions that includes workspace geometry and eye-gaze
arXiv
收藏 引用
arXiv 2020年
作者: Kratzer, Philipp Bihlmaier, Simon Midlagajni, Niteesh Balachandra Prakash, Rohit Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Humans to Robots Motions Research Group University of Stuttgart Germany Humans to Robots Motions Research Group University of Stuttgart Germany Learning and Intelligent Systems lab TU Berlin Germany
As robots become more present in open human environments, it will become crucial for robotic systems to understand and predict human motion. Such capabilities depend heavily on the quality and availability of motion c... 详细信息
来源: 评论
Balanced resonate-and-fire neurons  24
Balanced resonate-and-fire neurons
收藏 引用
Proceedings of the 41st International Conference on Machine learning
作者: Saya Higuchi Sebastian Kairat Sander M. Bohté Sebastian Otte Adaptive AI Lab Institute of Robotics and Cognitive Systems University of Lübeck Germany Machine Learning Group Centrum Wiskunde & Informatica (CWI) Amsterdam The Netherlands
The resonate-and-fire (RF) neuron, introduced over two decades ago, is a simple, efficient, yet biologically plausible spiking neuron model, which can extract frequency patterns within the time domain due to its reson...
来源: 评论