咨询与建议

限定检索结果

文献类型

  • 72 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 118 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 58 篇 计算机科学与技术...
    • 57 篇 控制科学与工程
    • 56 篇 软件工程
    • 17 篇 生物工程
    • 14 篇 机械工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 力学(可授工学、理...
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 5 篇 化学工程与技术
    • 5 篇 交通运输工程
    • 4 篇 光学工程
    • 3 篇 信息与通信工程
    • 3 篇 安全科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
  • 46 篇 理学
    • 22 篇 数学
    • 15 篇 生物学
    • 14 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 8 篇 系统科学
    • 6 篇 化学
  • 9 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 6 篇 医学
    • 6 篇 基础医学(可授医学...
    • 6 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学

主题

  • 13 篇 motion planning
  • 8 篇 planning
  • 5 篇 reinforcement le...
  • 5 篇 deep learning
  • 5 篇 robots
  • 5 篇 trajectory
  • 4 篇 measurement
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 safety
  • 3 篇 optimization
  • 3 篇 uncertainty
  • 2 篇 tools
  • 2 篇 conferences
  • 2 篇 programming
  • 2 篇 task analysis
  • 2 篇 three-dimensiona...
  • 2 篇 continuous time ...
  • 2 篇 buildings
  • 2 篇 stability analys...

机构

  • 23 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 7 篇 machine learning...
  • 6 篇 the learning sys...
  • 6 篇 max planck insti...
  • 4 篇 vector institute...
  • 4 篇 bosch center for...
  • 4 篇 technical univer...
  • 4 篇 the university o...
  • 4 篇 autonomous syste...
  • 4 篇 max planck insti...
  • 4 篇 the vector insti...
  • 4 篇 max planck insti...
  • 3 篇 abb corporate re...
  • 3 篇 university of ta...
  • 3 篇 max-planck insti...
  • 3 篇 max plank eth ce...
  • 3 篇 division of robo...
  • 2 篇 school of mathem...

作者

  • 27 篇 toussaint marc
  • 17 篇 schoellig angela...
  • 12 篇 mainprice jim
  • 12 篇 marc toussaint
  • 9 篇 zhou siqi
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 6 篇 angela p. schoel...
  • 6 篇 brunke lukas
  • 6 篇 kratzer philipp
  • 5 篇 siqi zhou
  • 5 篇 danny driess
  • 5 篇 hartmann valenti...
  • 4 篇 ozgur s. oguz
  • 4 篇 jim mainprice
  • 4 篇 schaal stefan
  • 4 篇 oh yoojin
  • 4 篇 bennewitz maren
  • 3 篇 pan sicong
  • 3 篇 heins adam

语言

  • 111 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Learning Systems and Robotics Lab"
118 条 记 录,以下是71-80 订阅
排序:
Robust Task and Motion Planning for Long-Horizon Architectural Construction Planning
Robust Task and Motion Planning for Long-Horizon Architectur...
收藏 引用
2020 IEEE/RSJ International Conference on Intelligent Robots and systems (IROS)
作者: Valentin N. Hartmann Ozgur S. Oguz Danny Driess Marc Toussaint Achim Menges Machine Learning & Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems Germany Institute for Computational Design and Construction University of Stuttgart Germany
Integrating robotic systems in architectural and construction processes is of core interest to increase the efficiency of the building industry. Automated planning for such systems enables design analysis tools and fa... 详细信息
来源: 评论
Control of legged robots with optimal distribution of contact forces
Control of legged robots with optimal distribution of contac...
收藏 引用
2011 11th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS 2011
作者: Righetti, Ludovic Buchli, Jonas Mistry, Michael Schaal, Stefan Computational Learning and Motor Control Lab. University of Southern California Los Angeles CA 90089 United States Max Planck Institute for Intelligent Systems Tübingen Germany Dept. of Advanced Robotics Italian Institute of Technology Genoa Italy Disney Research Pittsburgh Pittsburgh PA 15213 United States
The development of agile and safe humanoid robots require controllers that guarantee both high tracking performance and compliance with the environment. More specifically, the control of contact interaction is of cruc... 详细信息
来源: 评论
Trajectory-based off-policy deep reinforcement learning
arXiv
收藏 引用
arXiv 2019年
作者: Doerr, Andreas Volpp, Michael Toussaint, Marc Trimpe, Sebastian Daniel, Christian Bosch Center for Artificial Intelligence Renningen Germany Max Planck Institute for Intelligent Systems Stuttgart/Tubingen Germany Machine Learning and Robotics Lab University of Stuttgart Germany
Policy gradient methods are powerful reinforcement learning algorithms and have been demonstrated to solve many complex tasks. However, these methods are also data-inefficient, afflicted with high variance gradient es... 详细信息
来源: 评论
AMSwarmX: Safe Swarm Coordination in CompleX Environments via Implicit Non-Convex Decomposition of the Obstacle-Free Space
arXiv
收藏 引用
arXiv 2023年
作者: Adajania, Vivek K. Zhou, Siqi Singh, Arun Kumar Schoellig, Angela P. The Learning Systems and Robotics Lab The University of Toronto Institute for Aerospace Studies Canada The Technical University of Munich Germany The Vector Institute for Artificial Intelligence The University of Tartu Estonia
Quadrotor motion planning in complex environments leverage the concept of safe flight corridor (SFC) to facilitate static obstacle avoidance. Typically, SFCs are constructed through convex decomposition of the environ... 详细信息
来源: 评论
Robust task and motion planning for long-horizon architectural construction planning
arXiv
收藏 引用
arXiv 2020年
作者: Hartmann, Valentin N. Oguz, Ozgur S. Driess, Danny Toussaint, Marc Menges, Achim Machine Learning & Robotics Lab. University of Stuttgart Germany Max Planck Institute for Intelligent Systems Germany Institute for Computational Design and Construction University of Stuttgart Germany
Integrating robotic systems in architectural and construction processes is of core interest to increase the efficiency of the building industry. Automated planning for such systems enables design analysis tools and fa... 详细信息
来源: 评论
AMSwarm: An Alternating Minimization Approach for Safe Motion Planning of Quadrotor Swarms in Cluttered Environments
AMSwarm: An Alternating Minimization Approach for Safe Motio...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Vivek K. Adajania Siqi Zhou Arun Kumar Singh Angela P. Schoellig Learning Systems and Robotics Lab University of Toronto Institute for Aerospace Studies Canada Technical University of Munich Germany Vector Institute for Artificial Intelligence University of Tartu Estonia
This paper presents a scalable online algorithm to generate safe and kinematically feasible trajectories for quadrotor swarms. Existing approaches rely on linearizing Euclidean distance-based collision constraints and...
来源: 评论
AMSwarmX: Safe Swarm Coordination in CompleX Environments via Implicit Non-Convex Decomposition of the Obstacle-Free Space
AMSwarmX: Safe Swarm Coordination in CompleX Environments vi...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Vivek K. Adajania Siqi Zhou Arun Kumar Singh Angela P. Schoellig Learning Systems and Robotics Lab University of Toronto Institute for Aerospace Studies Canada Technical University of Munich Germany Vector Institute for Artificial Intelligence University of Tartu Estonia
Quadrotor motion planning in complex environments leverage the concept of safe flight corridor (SFC) to facilitate static obstacle avoidance. Typically, SFCs are constructed through convex decomposition of the environ... 详细信息
来源: 评论
Autonomous Forest Inventory with Legged Robots: System Design and Field Deployment
arXiv
收藏 引用
arXiv 2024年
作者: Mattamala, Matias Chebrolu, Nived Casseau, Benoit Freißmuth, Leonard Frey, Jonas Tuna, Turcan Hutter, Marco Fallon, Maurice Oxford Robotics Institute The University of Oxford United Kingdom Robotic Systems Lab ETH Zurich Switzerland Technical University of Munich Germany Autonomous Learning Group Max Planck Institute for Intelligent Systems Germany
We present a solution for autonomous forest inventory with a legged robotic platform. Compared to their wheeled and aerial counterparts, legged platforms offer an attractive balance of endurance and low soil impact fo... 详细信息
来源: 评论
Probabilistic Recurrent State-Space Models
arXiv
收藏 引用
arXiv 2018年
作者: Doerr, Andreas Daniel, Christian Schiegg, Martin Nguyen-Tuong, Duy Schaal, Stefan Toussaint, Marc Trimpe, Sebastian Bosch Center for Artificial Intelligence Renningen Germany Max Planck Institute for Intelligent Systems Stuttgart/Tübingen Germany Computational Learning and Motor Control Lab University of Southern California United States Machine Learning and Robotics Lab University of Stuttgart Germany
State-space models (SSMs) are a highly expressive model class for learning patterns in time series data and for system identification. Deterministic versions of SSMs (e.g. LSTMs) proved extremely successful in modelin... 详细信息
来源: 评论
A Data-Driven Method for Estimating Formation Flexibility in Beyond-Visual-Range Air Combat
A Data-Driven Method for Estimating Formation Flexibility in...
收藏 引用
International Conference on Unmanned Aircraft systems (ICUAS)
作者: Edvards Scukins Andre N. Costa Petter Ögren Aeronautical Solutions Division SAAB Aeronautics Robotics Perception and Learning Lab. Royal Institute of Technology (KTH) Decision Support Systems Subdivision Institute for Advanced Studies (IEAv)
Tactical decisions in air combat are typically evaluated using experience as a basis. Pilots undergo frequent training in various air combat processes to enhance their combat proficiency and evaluation skills. Having ... 详细信息
来源: 评论