咨询与建议

限定检索结果

文献类型

  • 51 篇 会议
  • 15 篇 期刊文献

馆藏范围

  • 66 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 45 篇 工学
    • 30 篇 计算机科学与技术...
    • 24 篇 软件工程
    • 15 篇 冶金工程
    • 9 篇 机械工程
    • 8 篇 控制科学与工程
    • 6 篇 电气工程
    • 5 篇 材料科学与工程(可...
    • 3 篇 动力工程及工程热...
    • 3 篇 土木工程
    • 3 篇 水利工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 1 篇 光学工程
    • 1 篇 化学工程与技术
    • 1 篇 矿业工程
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 船舶与海洋工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 27 篇 理学
    • 23 篇 数学
    • 4 篇 系统科学
    • 3 篇 统计学(可授理学、...
    • 2 篇 化学
    • 1 篇 大气科学
    • 1 篇 生物学
  • 17 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 2 篇 法学
    • 2 篇 社会学

主题

  • 14 篇 logistics
  • 11 篇 job shop schedul...
  • 8 篇 steel
  • 6 篇 laboratories
  • 6 篇 manufacturing sy...
  • 5 篇 scheduling algor...
  • 5 篇 iron
  • 5 篇 scheduling
  • 4 篇 single machine s...
  • 4 篇 dynamic programm...
  • 4 篇 heuristic algori...
  • 3 篇 marine vehicles
  • 3 篇 containers
  • 3 篇 metals industry
  • 3 篇 optimization
  • 3 篇 processor schedu...
  • 3 篇 linear programmi...
  • 3 篇 costs
  • 3 篇 algorithm design...
  • 3 篇 genetic algorith...

机构

  • 25 篇 liaoning key lab...
  • 13 篇 liaoning key lab...
  • 7 篇 national frontie...
  • 5 篇 ministry of educ...
  • 5 篇 liaoning enginee...
  • 5 篇 liaoning enginee...
  • 4 篇 key laboratory o...
  • 4 篇 liaoning key lab...
  • 4 篇 liaoning key lab...
  • 3 篇 liaoning key lab...
  • 3 篇 liaoning key lab...
  • 2 篇 school of materi...
  • 2 篇 national frontie...
  • 2 篇 school of materi...
  • 2 篇 northeastern uni...
  • 2 篇 key laboratory o...
  • 2 篇 liaoning enginee...
  • 2 篇 liaoning key lab...
  • 1 篇 china criminal p...
  • 1 篇 key laboratory o...

作者

  • 20 篇 lixin tang
  • 17 篇 tang lixin
  • 7 篇 yang yang
  • 6 篇 wang xianpeng
  • 4 篇 dong zhiming
  • 4 篇 xianpeng wang
  • 4 篇 tang li-xin
  • 4 篇 li-xin tang
  • 3 篇 gongshu wang
  • 3 篇 feng li
  • 3 篇 ying meng
  • 3 篇 qingxin guo
  • 3 篇 wu jian
  • 2 篇 xu meiling
  • 2 篇 su lijie
  • 2 篇 wenbo liu
  • 2 篇 ping yan
  • 2 篇 hu tenghui
  • 2 篇 zhang yanyan
  • 2 篇 wei jiang

语言

  • 61 篇 英文
  • 3 篇 其他
  • 2 篇 中文
检索条件"机构=Liaoning Key Laboratory of Manufacturing System and Logistics Optimization"
66 条 记 录,以下是1-10 订阅
排序:
Steel Defect Detection Algorithm Based on Multiobjective ENAS Sharing Strategy  24
Steel Defect Detection Algorithm Based on Multiobjective ENA...
收藏 引用
2nd International Conference on Frontiers of Intelligent manufacturing and Automation, CFIMA 2024
作者: Zhao, Tianchen Dong, Zhiming Wang, Xianpeng National Frontiers Science Center for Industrial Intelligence and Systems Optimization Northeastern University Shenyang China Ministry of Education Shenyang China Liaoning Engineering Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University Shenyang China Liaoning Key Laboratory of Manufacturing System and Logistics Optimization Northeastern University Shenyang China
When employing the network architecture search approach for designing a steel surface defect detector, there are issues with conflicting evaluation metrics and limited computational resources. To address this challeng... 详细信息
来源: 评论
Structure-Based Robust Fractal Graph Neural Network with Molecular Fingerprint BERT for Molecular Property Prediction
收藏 引用
IEEE Transactions on Emerging Topics in Computational Intelligence 2025年
作者: Dong, Yaguo Xu, Meiling Tang, Lixin Northeastern University National Frontiers Science Center for Industrial Intelligence and Systems Optimization Shenyang110819 China Shenyang110819 China Liaoning Engineering Laboratory of Data Analytics and Optimization for Smart Industry Shenyang110819 China Liaoning Key Laboratory of Manufacturing System and Logistics Optimization Shenyang110819 China
Accurate molecular property prediction is of great importance for AI-based drug design and bioinformatics. Despite recent promising progress, existing methods face challenges due to insufficient data labeling and imba... 详细信息
来源: 评论
Evolutionary Direction Learning With Multivariate Gaussian Probabilistic Model for Multiobjective optimization
收藏 引用
IEEE Transactions on Evolutionary Computation 2025年
作者: Wang, Xianpeng Zhang, Jingchuan Tang, Lixin Liu, Yaxue Ministry of Education National Frontiers Science Center for Industrial Intelligence and Systems Optimization Shenyang110819 China Ministry of Education Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University Shenyang110819 China National Frontiers Science Center for Industrial Intelligence and Systems Optimization Shenyang110819 China Liaoning Key Laboratory of Manufacturing System and Logistics Optimization Liaoning Engineering Laboratory of Data Analytics and Optimization for Smart Industry Shenyang110819 China
In recent years, utilizing data from the evolutionary process of multiobjective evolutionary algorithms (MOEAs) to learn knowledge and guide evolutionary search has become a popular research topic. However, existing k... 详细信息
来源: 评论
Dynamic multiobjective operation optimization of blast furnace ironmaking process
收藏 引用
Advanced Engineering Informatics 2025年 66卷
作者: Yumeng Zhao Xianpeng Wang Xiangman Song National Frontiers Science Center for Industrial Intelligence and Systems Optimization Northeastern University Shenyang 110819 Liaoning China Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University) Ministry of Education Shenyang 110819 Liaoning China Liaoning Engineering Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University Shenyang 110819 Liaoning China Liaoning Key Laboratory of Manufacturing System and Logistics Optimization Northeastern University Shenyang 110819 Liaoning China
As the largest energy-consuming and carbon-emitting facility in the iron and steel industry, blast furnace needs to dynamically adjust its operating parameters according to the production conditions to minimize energy...
来源: 评论
Visualization and simulation of steel metallurgy processes
收藏 引用
International Journal of Minerals,Metallurgy and Materials 2021年 第8期28卷 1387-1396页
作者: Te Xu Guang Song Yang Yang Pei-xin Ge Li-xin Tang Key Laboratory of Data Analytics and Optimization for Smart Industry(Northeastern University) Ministry of EducationShenyang 110819China Liaoning Engineering Laboratory of Operations Analytics and Optimization for Smart Industry Northeastern UniversityShenyang 110819China Liaoning Key Laboratory of Manufacturing System and Logistics Shenyang 110819China Institute of Industrial&Systems Engineering Northeastern UniversityShenyang 110819China
Steel production involves the transfer and transformation of material and energy at different levels, structures, and scales, and this process incurs substantial information in the material and energy dimensions. Give... 详细信息
来源: 评论
An optimal layout design for storage yard of container terminal
An optimal layout design for storage yard of container termi...
收藏 引用
19th International Conference on Industrial Engineering and Engineering Management
作者: Tang, Jian-Xun Tang, Li-Xin Liaoning Key Laboratory of Manufacturing System and Logistics Logistics Institute Northeastern University Shenyang China
This problem is to optimizeThis research is partly supported by State key Program of National Natural Science Foundation of China (71032004), the Fundamental Research Funds for the Central Universities (N090104002, N1... 详细信息
来源: 评论
The simultaneous quay crane and truck scheduling problem in container terminals
The simultaneous quay crane and truck scheduling problem in ...
收藏 引用
International Conference on Intelligent Computation Technology and Automation
作者: Zhao, Jiao Tang, Lixin Liaoning Key Laboratory of Manufacturing System and Logistics Logistics Institute Northeastern University Shenyang China
This paper addresses the simultaneous quay crane and truck scheduling problem (QC&TSP) at a container terminal. This paper considers one quay crane and several trucks to unload containers from the vessel, and ever... 详细信息
来源: 评论
Modeling and an ILP-based algorithm framework for the slab stack shuffling problem considering crane scheduling
Modeling and an ILP-based algorithm framework for the slab s...
收藏 引用
1st International Conference on Computing Control and Industrial Engineering, CCIE 2010
作者: Ren, Huizhi Tang, Lixin Liaoning Key Laboratory of Manufacturing System and Logistics Logistics Institute Northeastern University Shenyang China
This paper studies the slab stack shuffling problem considering crane scheduling in the slab yard of iron and steel industries. An ILP-based algorithm framework is proposed for the problem, in which an ILP model is pr... 详细信息
来源: 评论
A new scater search approach for the singe machine total weighted tardiness scheduling problem with sequence-dependent setup times
A new scater search approach for the singe machine total wei...
收藏 引用
4th International Workshop on Advanced Computational Intelligence, IWACI 2011
作者: Guo, Qingxin Tang, Lixin Liaoning Key Laboratory of Manufacturing System and Logistics Logistics Institute Northeastern University Shenyang 110819 China
In this paper, we propose a scatter search based meta-heuristic algorithm to solve the single machine total weighted tardiness problem with sequence-dependent setup times. Both construction heuristics and random strat... 详细信息
来源: 评论
Dynamic Topic Analysis in Academic Journals using Convex Non-negative Matrix Factorization Method
arXiv
收藏 引用
arXiv 2025年
作者: Yang, Yang Zhang, Tong Wu, Jian Su, Lijie National Frontiers Science Center for Industrial Intelligence and Systems Optimization Northeastern University Shenyang China China Criminal Police University Shenyang China Center for Advanced Process Decision-making Carnegie Mellon University PittsburghPA United States Beijing Institute for General Artificial Intelligence Beijing China Liaoning Key Laboratory of Manufacturing System and Logistics Optimization Northeastern University ChinaShenyang Shenyang110819 China Liaoning Engineering Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University Shenyang China
With the rapid advancement of large language models, academic topic identification and topic evolution analysis are crucial for enhancing AI’s understanding capabilities. Dynamic topic analysis provides a powerful ap... 详细信息
来源: 评论