咨询与建议

限定检索结果

文献类型

  • 149 篇 期刊文献
  • 79 篇 会议

馆藏范围

  • 228 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 157 篇 工学
    • 127 篇 计算机科学与技术...
    • 111 篇 软件工程
    • 28 篇 控制科学与工程
    • 21 篇 光学工程
    • 21 篇 信息与通信工程
    • 21 篇 生物工程
    • 19 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电气工程
    • 6 篇 机械工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
  • 84 篇 理学
    • 55 篇 数学
    • 24 篇 生物学
    • 18 篇 统计学(可授理学、...
    • 17 篇 系统科学
    • 14 篇 物理学
    • 8 篇 化学
  • 31 篇 管理学
    • 18 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 10 篇 医学
    • 10 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 教育学
    • 4 篇 教育学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 12 篇 machine learning
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 7 篇 semantics
  • 6 篇 computational li...
  • 5 篇 object detection
  • 5 篇 reinforcement le...
  • 5 篇 task analysis
  • 5 篇 neuroimaging
  • 5 篇 benchmarking
  • 5 篇 stochastic syste...
  • 4 篇 deep learning
  • 4 篇 distillation
  • 4 篇 iterative method...
  • 4 篇 learning algorit...
  • 4 篇 visualization
  • 3 篇 semantic segment...
  • 3 篇 deep neural netw...
  • 3 篇 training data
  • 3 篇 adversarial mach...

机构

  • 80 篇 miit key laborat...
  • 66 篇 college of compu...
  • 27 篇 college of compu...
  • 16 篇 miit key laborat...
  • 13 篇 miit key laborat...
  • 10 篇 collaborative in...
  • 8 篇 college of compu...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 department of el...
  • 5 篇 the college of c...
  • 4 篇 chongqing jiaoto...
  • 4 篇 riken center for...
  • 4 篇 nanyang technolo...
  • 4 篇 department of ma...
  • 4 篇 college of compu...
  • 4 篇 school of comput...
  • 4 篇 school of comput...
  • 4 篇 college of compu...

作者

  • 47 篇 chen songcan
  • 23 篇 li piji
  • 23 篇 huang sheng-jun
  • 18 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 16 篇 sheng-jun huang
  • 16 篇 liang dong
  • 15 篇 songcan chen
  • 11 篇 tan xiaoyang
  • 9 篇 geng chuanxing
  • 9 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 7 篇 wei mingqiang
  • 7 篇 li zhongnian
  • 7 篇 ming-kun xie
  • 6 篇 xie ming-kun
  • 6 篇 wang renzhi
  • 6 篇 li weikai
  • 6 篇 tao lue

语言

  • 216 篇 英文
  • 10 篇 其他
  • 5 篇 中文
检索条件"机构=MIIT Key Laboratory of Pattern Analysis and Machine Intelligence"
228 条 记 录,以下是1-10 订阅
排序:
KD-Crowd:a knowledge distillation framework for learning from crowds
收藏 引用
Frontiers of Computer Science 2025年 第1期19卷 119-130页
作者: Shaoyuan LI Yuxiang ZHENG Ye SHI Shengjun HUANG Songcan CHEN College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsMIIT Key Laboratory of Pattern Analysis and Machine IntelligenceNanjing 211106China
Recently, crowdsourcing has established itself as an efficient labeling solution by distributing tasks to crowd workers. As the workers can make mistakes with diverse expertise, one core learning task is to estimate e... 详细信息
来源: 评论
Robust domain adaptation with noisy and shifted label distribution
收藏 引用
Frontiers of Computer Science 2025年 第3期19卷 25-36页
作者: Shao-Yuan LI Shi-Ji ZHAO Zheng-Tao CAO Sheng-Jun HUANG Songcan CHEN MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing 211106China
Unsupervised Domain Adaptation(UDA)intends to achieve excellent results by transferring knowledge from labeled source domains to unlabeled target domains in which the data or label distribution *** UDA methods have ac... 详细信息
来源: 评论
Pushing one pair of labels apart each time in multi-label learning: from single positive to full labels
收藏 引用
Science China(Information Sciences) 2025年
作者: Xiang LI Xinrui WANG Songcan CHEN MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology/College of Artificial Intelligence Nanjing University of Aeronautics and Astronautics
In multi-label learning (MLL), it is extremely challenging to accurately annotate every appearing object due to expensive costs and limited knowledge. When facing such a challenge, a more practical and cheaper alterna...
来源: 评论
Active Learning for Long-Tailed Annotation
Active Learning for Long-Tailed Annotation
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Lin Geng Ningzhong Liu Han Sun Jie Qin MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing China Nanjing University of Aeronautics and Astronautics Nanjing China
Active learning (AL) is an effective method to balance annotation costs and model performance under resource-constrained circumstances. Most existing AL studies are typically designed for class-balanced datasets. Howe... 详细信息
来源: 评论
Aesthetics-guided Low-light Enhancement
收藏 引用
IEEE Transactions on pattern analysis and machine intelligence 2025年 PP卷 PP页
作者: Liang, Dong Gao, Yuanhang Li, Ling Xu, Zhengyan Huang, Sheng-Jun Chen, Songcan Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing China Nanjing University of Aeronautics and Astronautics Shenzhen Research Institute Shenzhen China
Evaluating the performance of low-light image enhancement (LLE) is highly subjective, thus making integrating human preferences into LLE a necessity. Existing methods fail to consider this and present a series of pote... 详细信息
来源: 评论
Filter, Obstruct and Dilute: Defending Against Backdoor Attacks on Semi-Supervised Learning
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Xinrui Geng, Chuanxing Wan, Wenhai Li, Shao-Yuan Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China School of Computer Science and Technology Huazhong University of Science and Technology China
Recent studies have verified that semi-supervised learning (SSL) is vulnerable to data poisoning backdoor attacks. Even a tiny fraction of contaminated training data is sufficient for adversaries to manipulate up to 9... 详细信息
来源: 评论
StructSR: Refuse Spurious Details in Real-World Image Super-Resolution
arXiv
收藏 引用
arXiv 2025年
作者: Li, Yachao Liang, Dong Ding, Tianyu Huang, Sheng-Jun College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing211106 China Microsoft Washington United States
Diffusion-based models have shown great promise in real-world image super-resolution (Real-ISR), but often generate content with structural errors and spurious texture details due to the empirical priors and illusions... 详细信息
来源: 评论
Generative Visual Commonsense Answering and Explaining with Generative Scene Graph Constructing
arXiv
收藏 引用
arXiv 2025年
作者: Yuan, Fan Fang, Xiaoyuan Quan, Rong Li, Jing Bi, Wei Xu, Xiaogang Li, Piji College of Artificial Intelligence Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing211106 China College of Artificial Intelligence Nanjing University of Aeronautics and Astronautics Key Laboratory of Brain-Machine Intelligence Technology Ministry of Education Nanjing211106 China Department of Computing The Hong Kong Polytechnic University Hong Kong The Chinese University of Hong Kong Hong Kong
Visual Commonsense Reasoning, which is regarded as one challenging task to pursue advanced visual scene comprehension, has been used to diagnose the reasoning ability of AI systems. However, reliable reasoning require... 详细信息
来源: 评论
E²GO: Free Your Hands for Smartphone Interaction
收藏 引用
International Journal of Human-Computer Interaction 2025年
作者: Yan, Shaoming Ju, Yuanliang Quan, Rong Tu, Huawei Liang, Dong MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China Department of Computer Science and Information Technology La Trobe University Melbourne Australia
Current eye-gaze interaction technologies for smartphones are considered inflexible, inaccurate, and power-hungry. These methods typically rely on hand involvement and accomplish partial interactions. In this paper, w... 详细信息
来源: 评论
Handling Noisy Annotation for Remote Sensing Semantic Segmentation via Boundary-Aware Knowledge Distillation
收藏 引用
IEEE Transactions on Geoscience and Remote Sensing 2025年 63卷
作者: Sun, Yue Liang, Dong Li, Shao-Yuan Chen, Songcan Huang, Sheng-Jun Nanjing University of Aeronautics and Astronautics College of Computer Science and Technology MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing211106 China Shenzhen Research Institute Nanjing University of Aeronautics and Astronautics Shenzhen518131 China Joint Laboratory of Spatial Intelligent Perception and Large Model Application Nanjing211106 China
In recent years, image segmentation has made significant progress, but acquiring annotated data is still a considerable challenge, especially in remote sensing imagery (RSI). The complex structure and intercategory co... 详细信息
来源: 评论