咨询与建议

限定检索结果

文献类型

  • 149 篇 期刊文献
  • 79 篇 会议

馆藏范围

  • 228 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 157 篇 工学
    • 127 篇 计算机科学与技术...
    • 111 篇 软件工程
    • 28 篇 控制科学与工程
    • 21 篇 光学工程
    • 21 篇 信息与通信工程
    • 21 篇 生物工程
    • 19 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电气工程
    • 6 篇 机械工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
  • 84 篇 理学
    • 55 篇 数学
    • 24 篇 生物学
    • 18 篇 统计学(可授理学、...
    • 17 篇 系统科学
    • 14 篇 物理学
    • 8 篇 化学
  • 31 篇 管理学
    • 18 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 10 篇 医学
    • 10 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 教育学
    • 4 篇 教育学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 12 篇 machine learning
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 7 篇 semantics
  • 6 篇 computational li...
  • 5 篇 object detection
  • 5 篇 reinforcement le...
  • 5 篇 task analysis
  • 5 篇 neuroimaging
  • 5 篇 benchmarking
  • 5 篇 stochastic syste...
  • 4 篇 deep learning
  • 4 篇 distillation
  • 4 篇 iterative method...
  • 4 篇 learning algorit...
  • 4 篇 visualization
  • 3 篇 semantic segment...
  • 3 篇 deep neural netw...
  • 3 篇 training data
  • 3 篇 adversarial mach...

机构

  • 80 篇 miit key laborat...
  • 66 篇 college of compu...
  • 27 篇 college of compu...
  • 16 篇 miit key laborat...
  • 13 篇 miit key laborat...
  • 10 篇 collaborative in...
  • 8 篇 college of compu...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 department of el...
  • 5 篇 the college of c...
  • 4 篇 chongqing jiaoto...
  • 4 篇 riken center for...
  • 4 篇 nanyang technolo...
  • 4 篇 department of ma...
  • 4 篇 college of compu...
  • 4 篇 school of comput...
  • 4 篇 school of comput...
  • 4 篇 college of compu...

作者

  • 47 篇 chen songcan
  • 23 篇 li piji
  • 23 篇 huang sheng-jun
  • 18 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 16 篇 sheng-jun huang
  • 16 篇 liang dong
  • 15 篇 songcan chen
  • 11 篇 tan xiaoyang
  • 9 篇 geng chuanxing
  • 9 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 7 篇 wei mingqiang
  • 7 篇 li zhongnian
  • 7 篇 ming-kun xie
  • 6 篇 xie ming-kun
  • 6 篇 wang renzhi
  • 6 篇 li weikai
  • 6 篇 tao lue

语言

  • 216 篇 英文
  • 10 篇 其他
  • 5 篇 中文
检索条件"机构=MIIT Key Laboratory of Pattern Analysis and Machine Intelligence"
228 条 记 录,以下是111-120 订阅
排序:
Language Reconstruction with Brain Predictive Coding from fMRI Data
arXiv
收藏 引用
arXiv 2024年
作者: Yin, Congchi Ye, Ziyi Li, Piji Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China Tsinghua University Beijing China
Many recent studies have shown that the perception of speech can be decoded from brain signals and subsequently reconstructed as continuous language. However, there is a lack of neurological basis for how the semantic... 详细信息
来源: 评论
Self-Imitation Guided High-Efficient Goal-Conditioned Reinforcement Learning
SSRN
收藏 引用
SSRN 2023年
作者: Li, Yao Wang, YuHui Tan, XiaoYang College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China Saudi Arabia
Goal-conditioned reinforcement learning (GCRL) aims to manipulate robots to reach desired goals, which poses a major challenge based on the varying configurations and objectives in different tasks. The challenges may ... 详细信息
来源: 评论
PointSmile: Point Self-supervised Learning via Curriculum Mutual Information
arXiv
收藏 引用
arXiv 2023年
作者: Li, Xin Wei, Mingqiang Chen, Songcan The School of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China The MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Self-supervised learning is attracting wide attention in point cloud processing. However, it is still not well-solved to gain discriminative and transferable features of point clouds for efficient training on downstre... 详细信息
来源: 评论
A centroid auto-fused hierarchical fuzzy c-means clustering
arXiv
收藏 引用
arXiv 2020年
作者: Lin, Yunxia Chen, Songcan College of Computer Science and Technology College of Artificial Intelligence Nanjing University of Aeronautics and Astronautics Nanjing211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence
Like k-means and Gaussian Mixture Model (GMM), fuzzy c-means (FCM) with soft partition has also become a popular clustering algorithm and still is extensively studied. However, these algorithms and their variants stil... 详细信息
来源: 评论
A Simplified Student Network with Multi-teacher Feature Fusion for Industrial Defect Detection  1
收藏 引用
7th Asian Conference on pattern Recognition, ACPR 2023
作者: Pei, Mingjing Liu, Ningzhong College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China School of Electronics and Information Engineering West Anhui University Lu’an China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing China
Improved industrial defect detection is deemed critical for ensuring high-quality manufacturing processes. Despite the effectiveness of knowledge distillation in detecting defects, there are still challenges in extrac... 详细信息
来源: 评论
A concise yet effective model for non-aligned incomplete multi-view and missing multi-label learning
arXiv
收藏 引用
arXiv 2020年
作者: Li, Xiang Chen, Songcan College of Computer Science and Technology College of Artificial Intelligence Nanjing University of Aeronautics and Astronautics Nanjing211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence
—In reality, learning from multi-view multi-label data inevitably confronts three challenges: missing labels, incomplete views, and non-aligned views. Existing methods mainly concern the first two and commonly need m... 详细信息
来源: 评论
Pushing One Pair of Labels Apart Each Time in Multi-Label Learning: From Single Positive to Full Labels
arXiv
收藏 引用
arXiv 2023年
作者: Li, Xiang Wang, Xinrui Chen, Songcan College of Computer Science and Technology College of Artificial Intelligence Nanjing University of Aeronautics and Astronautics Nanjing211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence
In Multi-Label Learning (MLL), it is extremely challenging to accurately annotate every appearing object due to expensive costs and limited knowledge. When facing such a challenge, a more practical and cheaper alterna... 详细信息
来源: 评论
Near-Optimal Decentralized Momentum Method for Nonconvex-PL Minimax Problems
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Feihu Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China Miit Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Minimax optimization plays an important role in many machine learning tasks such as generative adversarial networks (GANs) and adversarial training. Although recently a wide variety of optimization methods have been p... 详细信息
来源: 评论
Rectified euler k-means and beyond
arXiv
收藏 引用
arXiv 2021年
作者: Lin, Yunxia Chen, Songcan College of Computer Science and Technology College of Artificial Intelligence Nanjing University of Aeronautics and Astronautics Nanjing211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence
Euler k-means (EulerK) first maps data onto the unit hyper-sphere surface of equi-dimensional space via a complex mapping which induces the robust Euler kernel and next employs the popular k-means. Consequently, besid... 详细信息
来源: 评论
Transport based Graph Kernels
arXiv
收藏 引用
arXiv 2020年
作者: Ma, Kai Wan, Peng Zhang, Daoqiang Department of Computer Science and Technology MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Jiangsu Province210016 China
Graph kernel is a powerful tool measuring the similarity between graphs. Most of the existing graph kernels focused on node labels or attributes and ignored graph hierarchical structure information. In order to effect... 详细信息
来源: 评论