咨询与建议

限定检索结果

文献类型

  • 149 篇 期刊文献
  • 79 篇 会议

馆藏范围

  • 228 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 157 篇 工学
    • 127 篇 计算机科学与技术...
    • 111 篇 软件工程
    • 28 篇 控制科学与工程
    • 21 篇 光学工程
    • 21 篇 信息与通信工程
    • 21 篇 生物工程
    • 19 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电气工程
    • 6 篇 机械工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
  • 84 篇 理学
    • 55 篇 数学
    • 24 篇 生物学
    • 18 篇 统计学(可授理学、...
    • 17 篇 系统科学
    • 14 篇 物理学
    • 8 篇 化学
  • 31 篇 管理学
    • 18 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 10 篇 医学
    • 10 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 教育学
    • 4 篇 教育学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 12 篇 machine learning
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 7 篇 semantics
  • 6 篇 computational li...
  • 5 篇 object detection
  • 5 篇 reinforcement le...
  • 5 篇 task analysis
  • 5 篇 neuroimaging
  • 5 篇 benchmarking
  • 5 篇 stochastic syste...
  • 4 篇 deep learning
  • 4 篇 distillation
  • 4 篇 iterative method...
  • 4 篇 learning algorit...
  • 4 篇 visualization
  • 3 篇 semantic segment...
  • 3 篇 deep neural netw...
  • 3 篇 training data
  • 3 篇 adversarial mach...

机构

  • 80 篇 miit key laborat...
  • 66 篇 college of compu...
  • 27 篇 college of compu...
  • 16 篇 miit key laborat...
  • 13 篇 miit key laborat...
  • 10 篇 collaborative in...
  • 8 篇 college of compu...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 department of el...
  • 5 篇 the college of c...
  • 4 篇 chongqing jiaoto...
  • 4 篇 riken center for...
  • 4 篇 nanyang technolo...
  • 4 篇 department of ma...
  • 4 篇 college of compu...
  • 4 篇 school of comput...
  • 4 篇 school of comput...
  • 4 篇 college of compu...

作者

  • 47 篇 chen songcan
  • 23 篇 li piji
  • 23 篇 huang sheng-jun
  • 18 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 16 篇 sheng-jun huang
  • 16 篇 liang dong
  • 15 篇 songcan chen
  • 11 篇 tan xiaoyang
  • 9 篇 geng chuanxing
  • 9 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 7 篇 wei mingqiang
  • 7 篇 li zhongnian
  • 7 篇 ming-kun xie
  • 6 篇 xie ming-kun
  • 6 篇 wang renzhi
  • 6 篇 li weikai
  • 6 篇 tao lue

语言

  • 216 篇 英文
  • 10 篇 其他
  • 5 篇 中文
检索条件"机构=MIIT Key Laboratory of Pattern Analysis and Machine Intelligence"
228 条 记 录,以下是151-160 订阅
排序:
Active learning for multiple target models  22
Active learning for multiple target models
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Ying-Peng Tang Sheng-Jun Huang College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Collaborative Innovation Center of Novel Software Technology and Industrialization MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
We describe and explore a novel setting of active learning (AL), where there are multiple target models to be learned simultaneously. In many real applications, the machine learning system is required to be deployed o...
来源: 评论
InfoDiffusion: Information Entropy Aware Diffusion Process for Non-Autoregressive Text Generation
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Renzhi Li, Jing Li, Piji College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China Department of Computing The Hong Kong Polytechnic University China
Diffusion models have garnered considerable interest in the field of text generation. Several studies have explored text diffusion models with different structures and applied them to various tasks, including named en... 详细信息
来源: 评论
A Tailored Physics-informed Neural Network Method for Solving Singularly Perturbed Differential Equations  22
A Tailored Physics-informed Neural Network Method for Solvin...
收藏 引用
Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial intelligence
作者: Yiwen Pang Ye Li Sheng-Jun Huang College of Computer Science and Technology/Artificial Intelligence Nanjing University of Aeronautics and Astronautics China College of Computer Science and Technology/Artificial Intelligence Nanjing University of Aeronautics and Astronautics China and MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China
Physics-informed neural networks (PINNs) have recently been demonstrated to be effective for the numerical solution of differential equations, with the advantage of small real labelled data needed. However, the perfor... 详细信息
来源: 评论
Improving model robustness by adaptively correcting perturbation levels with active queries
arXiv
收藏 引用
arXiv 2021年
作者: Ning, Kun-Peng Tao, Lue Chen, Songcan Huang, Sheng-Jun College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing211106 China
In addition to high accuracy, robustness is becoming increasingly important for machine learning models in various applications. Recently, much research has been devoted to improving the model robustness by training w... 详细信息
来源: 评论
MUS-CDB: Mixed Uncertainty Sampling with Class Distribution Balancing for Active Annotation in Aerial Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Liang, Dong Zhang, Jing-Wei Tang, Ying-Peng Huang, Sheng-Jun The College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing211106 China
Recent aerial object detection models rely on a large amount of labeled training data, which requires unaffordable manual labeling costs in large aerial scenes with dense objects. Active learning effectively reduces t... 详细信息
来源: 评论
Truly proximal policy optimization
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Yuhui He, Hao Wen, Chao Tan, Xiaoyang College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing210016 China
Proximal policy optimization (PPO) is one of the most successful deep reinforcement-learning methods, achieving state-of-the-art performance across a wide range of challenging tasks. However, its optimization behavior... 详细信息
来源: 评论
Characteristic AI Agents via Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Xi Dai, Hongliang Gao, Shen Li, Piji College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China School of Computer Science and Technology Shandong University China
The advancement of Large Language Models (LLMs) has led to significant enhancements in the performance of chatbot systems. Many researchers have dedicated their efforts to the development of bringing characteristics t... 详细信息
来源: 评论
With false friends like these, who can notice mistakes?
arXiv
收藏 引用
arXiv 2020年
作者: Tao, Lue Feng, Lei Yi, Jinfeng Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science Chongqing University China JD AI Research
Adversarial examples crafted by an explicit adversary have attracted significant attention in machine learning. However, the security risk posed by a potential false friend has been largely overlooked. In this paper, ... 详细信息
来源: 评论
Guidance Not Obstruction: A Conjugate Consistent Enhanced Strategy for Domain Generalization
arXiv
收藏 引用
arXiv 2024年
作者: Cao, Meng Chen, Songcan The MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing210016 China The College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing210016 China
Domain generalization addresses domain shift in real-world applications. Most approaches adopt a domain angle, seeking invariant representation across domains by aligning their marginal distributions, irrespective of ...
来源: 评论
Deep robust multilevel semantic cross-modal hashing
arXiv
收藏 引用
arXiv 2020年
作者: Song, Ge Zhao, Jun Tan, Xiaoyang College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Miit Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization Nanyang Technological University
Hashing based cross-modal retrieval has rec made significant progress. But straightfor embedding data from different modalities in joint Hamming space will inevitably produce codes due to the intrinsic modality discre... 详细信息
来源: 评论