咨询与建议

限定检索结果

文献类型

  • 154 篇 期刊文献
  • 87 篇 会议

馆藏范围

  • 241 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 167 篇 工学
    • 136 篇 计算机科学与技术...
    • 110 篇 软件工程
    • 36 篇 控制科学与工程
    • 23 篇 信息与通信工程
    • 22 篇 光学工程
    • 21 篇 生物工程
    • 19 篇 生物医学工程(可授...
    • 9 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 机械工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
  • 87 篇 理学
    • 57 篇 数学
    • 24 篇 生物学
    • 18 篇 统计学(可授理学、...
    • 17 篇 系统科学
    • 15 篇 物理学
    • 8 篇 化学
  • 31 篇 管理学
    • 19 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 10 篇 医学
    • 10 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 12 篇 machine learning
  • 8 篇 contrastive lear...
  • 8 篇 training
  • 7 篇 semantics
  • 6 篇 deep neural netw...
  • 6 篇 computational li...
  • 5 篇 object detection
  • 5 篇 reinforcement le...
  • 5 篇 task analysis
  • 5 篇 neuroimaging
  • 5 篇 benchmarking
  • 5 篇 stochastic syste...
  • 4 篇 deep learning
  • 4 篇 distillation
  • 4 篇 iterative method...
  • 4 篇 learning algorit...
  • 4 篇 visualization
  • 3 篇 training data
  • 3 篇 adversarial mach...
  • 3 篇 annotations

机构

  • 87 篇 miit key laborat...
  • 73 篇 college of compu...
  • 29 篇 college of compu...
  • 17 篇 miit key laborat...
  • 14 篇 miit key laborat...
  • 10 篇 collaborative in...
  • 9 篇 college of compu...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 school of comput...
  • 5 篇 department of el...
  • 5 篇 the college of c...
  • 4 篇 chongqing jiaoto...
  • 4 篇 riken center for...
  • 4 篇 nanyang technolo...
  • 4 篇 department of ma...
  • 4 篇 college of compu...
  • 4 篇 state key labora...
  • 4 篇 school of comput...

作者

  • 52 篇 chen songcan
  • 26 篇 huang sheng-jun
  • 23 篇 li piji
  • 19 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 17 篇 liang dong
  • 16 篇 sheng-jun huang
  • 16 篇 songcan chen
  • 13 篇 tan xiaoyang
  • 12 篇 geng chuanxing
  • 9 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 7 篇 wei mingqiang
  • 7 篇 wan wenhai
  • 7 篇 li zhongnian
  • 7 篇 ming-kun xie
  • 6 篇 xie ming-kun
  • 6 篇 wang renzhi
  • 6 篇 li weikai

语言

  • 209 篇 英文
  • 30 篇 其他
  • 5 篇 中文
检索条件"机构=MIIT Key Laboratory of Pattern Analysis and Machine Intelligence"
241 条 记 录,以下是211-220 订阅
排序:
Learning from crowds with sparse and imbalanced annotations
arXiv
收藏 引用
arXiv 2021年
作者: Shi, Ye Li, Shao-Yuan Huang, Sheng-Jun Ministry of Industry and Information Technology Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing211106 China State Key Laboratory for Novel Software Technology Nanjing University Nanjing210023 China
Traditional supervised learning requires ground truth labels for the training data, whose collection can be difficult in many cases. Recently, crowdsourcing has established itself as an efficient labeling solution thr... 详细信息
来源: 评论
Stabilizing Q learning via soft Mellowmax operator
arXiv
收藏 引用
arXiv 2020年
作者: Gan, Yaozhong Zhang, Zhe Tan, Xiaoyang College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization China
Learning complicated value functions in high dimensional state space by function approximation is a challenging task, partially due to that the max-operator used in temporal difference updates can theoretically cause ... 详细信息
来源: 评论
A Multi-Layer Random Walk Method for Local Dynamic Community Detection in Brain Functional Network
A Multi-Layer Random Walk Method for Local Dynamic Community...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Xuyun Wen Daoqiang Zhang College of Computer Science and Technology MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing Jiangsu China College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing Jiangsu China Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation Ministry of Education Shanghai China
Detecting the time-varying community structure of brain functional network is very important to reveal dynamic properties of the human brain. Although several community detection methods have been proposed, they are l... 详细信息
来源: 评论
A Survey of Learning on Small Data: Generalization, Optimization, and Challenge
arXiv
收藏 引用
arXiv 2022年
作者: Cao, Xiaofeng Bu, Weixin Huang, Shengjun Zhang, Minling Tsang, Ivor W. Ong, Yew Soon Kwok, James T. The School of Artificial Intelligence Jilin University Changchun130012 China The MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing211106 China The School of Computer Science and Engineering Southeast University Nanjing210096 China Ministry of Education China The Australian Artificial Intelligence Institute University of Technology SydneyNSW2008 Australia Singapore The School of Computer Science and Engineering Nanyang Technological University Nanyang Avenue Singapore639798 Singapore Artificial Intelligence Scientist of A∗STAR Singapore The Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong
Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data that approximates the generalization ability of big data is ... 详细信息
来源: 评论
Detail-recovery Image Deraining via Context Aggregation Networks
Detail-recovery Image Deraining via Context Aggregation Netw...
收藏 引用
Conference on Computer Vision and pattern Recognition (CVPR)
作者: Sen Deng Mingqiang Wei Jun Wang Yidan Feng Luming Liang Haoran Xie Fu Lee Wang Meng Wang Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Microsoft Applied Sciences Group Lingnan University The Open University of Hong Kong Hefei University of Technology
This paper looks at this intriguing question: are single images with their details lost during deraining, reversible to their artifact-free status? We propose an end-to-end detail-recovery image deraining network (ter... 详细信息
来源: 评论
AADL and Modelica model combination and model conversion based on CPS  20
AADL and Modelica model combination and model conversion bas...
收藏 引用
Proceedings of the 2020 4th International Conference on Electronic Information Technology and Computer Engineering
作者: Yifeng Zhu Zining Cao Fujun Wang Weiwei Lu College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China College of Computer Science and Technology Collaborative Innovation Center of Novel Software Technology and Industrialization MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics and Science and Technology on Electro-optic Control Laboratory Luoyang China Science and Technology on Electro-optic Control Laboratory Luoyang China
Cyber-Physical System (CPS), which realizes the close integration of physical resources and information resources, is a distributed and asynchronous dynamic hybrid system running in different time and space. In this p... 详细信息
来源: 评论
With false friends like these, who can notice mistakes?
arXiv
收藏 引用
arXiv 2020年
作者: Tao, Lue Feng, Lei Yi, Jinfeng Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science Chongqing University China JD AI Research
Adversarial examples crafted by an explicit adversary have attracted significant attention in machine learning. However, the security risk posed by a potential false friend has been largely overlooked. In this paper, ... 详细信息
来源: 评论
Deep robust multilevel semantic cross-modal hashing
arXiv
收藏 引用
arXiv 2020年
作者: Song, Ge Zhao, Jun Tan, Xiaoyang College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Miit Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization Nanyang Technological University
Hashing based cross-modal retrieval has rec made significant progress. But straightfor embedding data from different modalities in joint Hamming space will inevitably produce codes due to the intrinsic modality discre... 详细信息
来源: 评论
Unsupervised domain adaptation with progressive adaptation of subspaces
arXiv
收藏 引用
arXiv 2020年
作者: Li, Weikai Chen, Songcan College of Computer Science & Technology Nanjing University of Aeronautics & Astronautics Nanjing Jiangsu211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics & Astronautics Nanjing Jiangsu211106 China
Unsupervised Domain Adaptation (UDA) aims to classify unlabeled target domain by transferring knowledge from labeled source domain with domain shift. Most of the existing UDA methods try to mitigate the adverse impact... 详细信息
来源: 评论
Probability analysis of axillary lymph node metastasis in breast cancer patients using particle space-time distribution model
Probability analysis of axillary lymph node metastasis in br...
收藏 引用
作者: Chen, Fang Liu, Jia Zhang, Xinran Liao, Hongen Department of Computer Science and Engineering Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing210016 China Department of Biomedical Engineering School of Medicine Tsinghua University Beijing10084 China
The possibility of axillary lymph node metastasis differs in different breast cancer patients and is the strongest prognostic indicator in breast cancer. The existing studies mainly explored the relationship of axilla... 详细信息
来源: 评论