咨询与建议

限定检索结果

文献类型

  • 149 篇 期刊文献
  • 79 篇 会议

馆藏范围

  • 228 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 157 篇 工学
    • 127 篇 计算机科学与技术...
    • 111 篇 软件工程
    • 28 篇 控制科学与工程
    • 21 篇 光学工程
    • 21 篇 信息与通信工程
    • 21 篇 生物工程
    • 19 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电气工程
    • 6 篇 机械工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
  • 84 篇 理学
    • 55 篇 数学
    • 24 篇 生物学
    • 18 篇 统计学(可授理学、...
    • 17 篇 系统科学
    • 14 篇 物理学
    • 8 篇 化学
  • 31 篇 管理学
    • 18 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 10 篇 医学
    • 10 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 教育学
    • 4 篇 教育学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 12 篇 machine learning
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 7 篇 semantics
  • 6 篇 computational li...
  • 5 篇 object detection
  • 5 篇 reinforcement le...
  • 5 篇 task analysis
  • 5 篇 neuroimaging
  • 5 篇 benchmarking
  • 5 篇 stochastic syste...
  • 4 篇 deep learning
  • 4 篇 distillation
  • 4 篇 iterative method...
  • 4 篇 learning algorit...
  • 4 篇 visualization
  • 3 篇 semantic segment...
  • 3 篇 deep neural netw...
  • 3 篇 training data
  • 3 篇 adversarial mach...

机构

  • 80 篇 miit key laborat...
  • 66 篇 college of compu...
  • 27 篇 college of compu...
  • 16 篇 miit key laborat...
  • 13 篇 miit key laborat...
  • 10 篇 collaborative in...
  • 8 篇 college of compu...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 department of el...
  • 5 篇 the college of c...
  • 4 篇 chongqing jiaoto...
  • 4 篇 riken center for...
  • 4 篇 nanyang technolo...
  • 4 篇 department of ma...
  • 4 篇 college of compu...
  • 4 篇 school of comput...
  • 4 篇 school of comput...
  • 4 篇 college of compu...

作者

  • 47 篇 chen songcan
  • 23 篇 li piji
  • 23 篇 huang sheng-jun
  • 18 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 16 篇 sheng-jun huang
  • 16 篇 liang dong
  • 15 篇 songcan chen
  • 11 篇 tan xiaoyang
  • 9 篇 geng chuanxing
  • 9 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 7 篇 wei mingqiang
  • 7 篇 li zhongnian
  • 7 篇 ming-kun xie
  • 6 篇 xie ming-kun
  • 6 篇 wang renzhi
  • 6 篇 li weikai
  • 6 篇 tao lue

语言

  • 216 篇 英文
  • 10 篇 其他
  • 5 篇 中文
检索条件"机构=MIIT Key Laboratory of Pattern Analysis and Machine Intelligence"
228 条 记 录,以下是21-30 订阅
排序:
The Co-varying Multimodal pattern in Treatment-Resistant and Non-treatment-Resistant Schizophrenia
The Co-varying Multimodal Pattern in Treatment-Resistant and...
收藏 引用
4th International Workshop on Human Brain and Artificial intelligence, HBAI 2024
作者: Cao, Siyuan Gao, Shuzhan Liang, Chuang Calhoun, Vince D. Wen, Xuyun Fu, Zening Wu, Lei Jiang, Rongtao Zhang, Daoqiang Qi, Shile Xu, Xijia Department of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China Key Laboratory of Brain-Machine Intelligence Technology Ministry of Education Nanjing University of Aeronautics and Astronautics Nanjing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing China Department of Psychiatry Affiliated Nanjing Brain Hospital Nanjing Medical University Nanjing China Department of Psychiatry Nanjing Brain Hospital Medical School Nanjing University Nanjing China Georgia State University Georgia Institute of Technology Emory University AtlantaGA United States Department of Radiology and Biomedical Imaging Yale University New HavenCT United States
Schizophrenia (SZ) is a severe mental illness, with 20%-40% exhibit an inadequate or poor response to the first-line antipsychotic drugs (treatment-resistant schizophrenia, TR-SZ). However, the neural mechanisms under... 详细信息
来源: 评论
Multi-task regression learning for survival analysis via prior information guided transductive matrix completion
收藏 引用
Frontiers of Computer Science 2020年 第5期14卷 99-112页
作者: Lei Chen Kai Shao Xianzhong Long Lingsheng Wang Jiangsu Key Laboratory of Big Data Security and Intelligent Processing Nanjing University of Posts and TelecommunicationsNanjing210023China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and AstronauticsNanjing211106China
Survival analysis aims to predict the occurrence time of a particular event of interest,which is crucial for the prognosis analysis of ***,due to the limited study period and potential losing tracks,the observed data ... 详细信息
来源: 评论
Learning multi-tasks with inconsistent labels by using auxiliary big task
收藏 引用
Frontiers of Computer Science 2023年 第5期17卷 119-132页
作者: Quan FENG Songcan CHEN College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsNanjing 211106China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and AstronauticsNanjing 211106China
Multi-task learning is to improve the performance of the model by transferring and exploiting common knowledge among *** MTL works mainly focus on the scenario where label sets among multiple tasks(MTs)are usually the... 详细信息
来源: 评论
Sequential Cooperative Distillation for Imbalanced Multi-Task Learning
收藏 引用
Journal of Computer Science & Technology 2024年 第5期39卷 1094-1106页
作者: Quan Feng Jia-Yu Yao Ming-Kun Xie Sheng-Jun Huang Song-Can Chen College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsNanjing 211106China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing 211106China
Multi-task learning(MTL)can boost the performance of individual tasks by mutual learning among multiple related ***,when these tasks assume diverse complexities,their corresponding losses involved in the MTL objective... 详细信息
来源: 评论
A comprehensive perspective of contrastive self-supervised learning
收藏 引用
Frontiers of Computer Science 2021年 第4期15卷 1-3页
作者: Songcan CHEN Chuanxing GENG College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsNanjing 211106China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing 211106China
Self-supervised learning(SSL),as a new unsupervised representation learning paradigm in machine learning,recently has received extensive attention,which is also regarded as the future of machine learning by the Turing... 详细信息
来源: 评论
Class-aware Learning for Imbalanced Multi-Label Classification  5
Class-aware Learning for Imbalanced Multi-Label Classificati...
收藏 引用
5th IEEE International Conference on Civil Aviation Safety and Information Technology, ICCASIT 2023
作者: Chen, Jiayao Li, Shaoyuan Nanjing University of Aeronautics and Astronautics Miit Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Imbalanced multi-label image classification has gained increasing attention recently, in which each sample has multiple class labels, but the number of each category is unevenly distributed. It's common in practic... 详细信息
来源: 评论
A Double Regularization Loss Based on Long-tailed Noisy Labels  5
A Double Regularization Loss Based on Long-tailed Noisy Labe...
收藏 引用
5th IEEE International Conference on Civil Aviation Safety and Information Technology, ICCASIT 2023
作者: Wang, Lei Li, Shaoyuan Nanjing University of Aeronautics and Astronautics Miit Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Extensive research has been conducted in recent years to solve the long-tailed distribution and achieved excellent results. However, in contrast to well-designed data, datasets with label noise are common in the real ... 详细信息
来源: 评论
On the learning dynamics of two-layer quadratic neural networks for understanding deep learning
收藏 引用
Frontiers of Computer Science 2022年 第3期16卷 77-82页
作者: Zhenghao TAN Songcan CHEN College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsNanjing 211106China College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsMIIT Key Laboratory of Pattern Analysis and Machine IntelligenceNanjing 211106China
Deep learning performs as a powerful paradigm in many real-world applications;however,its mechanism remains much of a *** gain insights about nonlinear hierarchical deep networks,we theoretically describe the coupled ... 详细信息
来源: 评论
Bayesian compressive principal component analysis
收藏 引用
Frontiers of Computer Science 2020年 第4期14卷 29-38页
作者: Di MA Songcan CHEN College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsNanjing211106China College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsMIIT Key Laboratory of Pattern Analysis and Machine IntelligenceNanjing211106China
Principal component analysis(PCA)is a widely used method for multivariate data analysis that projects the original high-dimensional data onto a low-dimensional subspace with maximum ***,in practice,we would be more li... 详细信息
来源: 评论
An Improved Algorithm for Spiking Neural Networks with Multi-Scale Attention Coding
An Improved Algorithm for Spiking Neural Networks with Multi...
收藏 引用
2024 International Conference on Cyber-Physical Social intelligence, ICCSI 2024
作者: Chen, Sisi Chen, Xiaofeng Li, Weikai Chongqing Jiaotong University Department of Mathematics Chongqing China Miit Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Spiking Neural Networks (SNNs), driven by spike-based mechanisms, are known for their high efficiency and low energy consumption, which makes them ideal for applications like image classification, object detection, an... 详细信息
来源: 评论