咨询与建议

限定检索结果

文献类型

  • 151 篇 期刊文献
  • 79 篇 会议

馆藏范围

  • 230 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 158 篇 工学
    • 128 篇 计算机科学与技术...
    • 111 篇 软件工程
    • 28 篇 控制科学与工程
    • 22 篇 信息与通信工程
    • 21 篇 光学工程
    • 21 篇 生物工程
    • 19 篇 生物医学工程(可授...
    • 8 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 机械工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
  • 85 篇 理学
    • 56 篇 数学
    • 24 篇 生物学
    • 18 篇 统计学(可授理学、...
    • 17 篇 系统科学
    • 14 篇 物理学
    • 8 篇 化学
  • 31 篇 管理学
    • 18 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 10 篇 医学
    • 10 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 教育学
    • 4 篇 教育学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 12 篇 machine learning
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 7 篇 semantics
  • 6 篇 computational li...
  • 5 篇 object detection
  • 5 篇 reinforcement le...
  • 5 篇 task analysis
  • 5 篇 neuroimaging
  • 5 篇 benchmarking
  • 5 篇 stochastic syste...
  • 4 篇 deep learning
  • 4 篇 distillation
  • 4 篇 iterative method...
  • 4 篇 learning algorit...
  • 4 篇 visualization
  • 3 篇 semantic segment...
  • 3 篇 deep neural netw...
  • 3 篇 training data
  • 3 篇 adversarial mach...

机构

  • 80 篇 miit key laborat...
  • 66 篇 college of compu...
  • 28 篇 college of compu...
  • 17 篇 miit key laborat...
  • 13 篇 miit key laborat...
  • 10 篇 collaborative in...
  • 8 篇 college of compu...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 department of el...
  • 5 篇 the college of c...
  • 4 篇 chongqing jiaoto...
  • 4 篇 riken center for...
  • 4 篇 nanyang technolo...
  • 4 篇 department of ma...
  • 4 篇 college of compu...
  • 4 篇 school of comput...
  • 4 篇 school of comput...
  • 4 篇 college of compu...

作者

  • 47 篇 chen songcan
  • 23 篇 li piji
  • 23 篇 huang sheng-jun
  • 18 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 16 篇 sheng-jun huang
  • 16 篇 liang dong
  • 15 篇 songcan chen
  • 12 篇 tan xiaoyang
  • 9 篇 geng chuanxing
  • 9 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 7 篇 wei mingqiang
  • 7 篇 li zhongnian
  • 7 篇 ming-kun xie
  • 6 篇 xie ming-kun
  • 6 篇 wang renzhi
  • 6 篇 li weikai
  • 6 篇 tao lue

语言

  • 217 篇 英文
  • 11 篇 其他
  • 5 篇 中文
检索条件"机构=MIIT Key Laboratory of Pattern Analysis and Machine Intelligence"
230 条 记 录,以下是31-40 订阅
排序:
Bayesian compressive principal component analysis
收藏 引用
Frontiers of Computer Science 2020年 第4期14卷 29-38页
作者: Di MA Songcan CHEN College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsNanjing211106China College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsMIIT Key Laboratory of Pattern Analysis and Machine IntelligenceNanjing211106China
Principal component analysis(PCA)is a widely used method for multivariate data analysis that projects the original high-dimensional data onto a low-dimensional subspace with maximum ***,in practice,we would be more li... 详细信息
来源: 评论
An Improved AdaBoost Method in Imbalanced Data Learning
An Improved AdaBoost Method in Imbalanced Data Learning
收藏 引用
2023 International Conference on Cyber-Physical Social intelligence, ICCSI 2023
作者: Li, Ting Chen, Xiaofeng Li, Weikai Chongqing Jiaotong University Department of Mathematics Chongqing China Miit Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Learning from imbalanced datasets has recently received increasing research attention. Despite the remarkable results of AdaBoost in balanced situation, the imbalance problem remains to be solved. To address this, thi... 详细信息
来源: 评论
Beyond Myopia: Learning from Positive and Unlabeled Data through Holistic Predictive Trends  37
Beyond Myopia: Learning from Positive and Unlabeled Data thr...
收藏 引用
37th Conference on Neural Information Processing Systems, NeurIPS 2023
作者: Wang, Xinrui Wan, Wenhai Geng, Chuanxing Li, Shaoyuan Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China
Learning binary classifiers from positive and unlabeled data (PUL) is vital in many real-world applications, especially when verifying negative examples is difficult. Despite the impressive empirical performance of re... 详细信息
来源: 评论
An Improved Algorithm for Spiking Neural Networks with Multi-Scale Attention Coding
An Improved Algorithm for Spiking Neural Networks with Multi...
收藏 引用
2024 International Conference on Cyber-Physical Social intelligence, ICCSI 2024
作者: Chen, Sisi Chen, Xiaofeng Li, Weikai Chongqing Jiaotong University Department of Mathematics Chongqing China Miit Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Spiking Neural Networks (SNNs), driven by spike-based mechanisms, are known for their high efficiency and low energy consumption, which makes them ideal for applications like image classification, object detection, an... 详细信息
来源: 评论
Robust AUC maximization for classification with pairwise confidence comparisons
收藏 引用
Frontiers of Computer Science 2024年 第4期18卷 73-83页
作者: Haochen SHI Mingkun XIE Shengjun HUANG College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsNanjing 211106China College of Electronic and Information Engineering Nanjing University of Aeronautics and AstronauticsNanjing 211106China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing 211106China
Supervised learning often requires a large number of labeled examples,which has become a critical bottleneck in the case that manual annotating the class labels is *** mitigate this issue,a new framework called pairwi... 详细信息
来源: 评论
Medical Report Generation Based on Segment-Enhanced Contrastive Representation Learning  12th
Medical Report Generation Based on Segment-Enhanced Contras...
收藏 引用
12th National CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2023
作者: Zhao, Ruoqing Wang, Xi Dai, Hongliang Gao, Pan Li, Piji College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Automated radiology report generation has the potential to improve radiology reporting and alleviate the workload of radiologists. However, the medical report generation task poses unique challenges due to the limited... 详细信息
来源: 评论
Source-free open-set domain adaptation via unknown-aware global–local learning
收藏 引用
Knowledge-Based Systems 2025年 323卷
作者: Qing Tian Yanzhi Li Canyu Sun Xiang Liu School of Software Nanjing University of Information Science and Technology Nanjing 210044 China Wuxi Institute of Technology Nanjing University of Information Science and Technology Wuxi 214000 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
Source-free open-set domain adaptation (SFODA) seeks to promote target domain learning using a model pre-trained on the source domain, where there are domain and category shifts between two domains. The main challenge...
来源: 评论
Graph Hyperalignment for Multi-subject fMRI Functional Alignment  1
收藏 引用
1st International Workshop on Graph Learning in Medical Imaging, GLMI 2019 held in conjunction with the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
作者: Li, Weida Chen, Fang Zhang, Daoqiang College of Computer Science and Technology MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing China
In fMRI analysis, the scientist seeks to aggregate multi-subject fMRI data so that inferences shared across subjects can be achieved. The challenge is to eliminate the variability of anatomical structure and functiona... 详细信息
来源: 评论
Sign-aware Perturbations Regression
Sign-aware Perturbations Regression
收藏 引用
2021 SIAM International Conference on Data Mining, SDM 2021
作者: Li, Zhongnian Zhang, Tao Shao, Wei Chen, Songcan Zhang, Daoqiang MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China
This paper presents the first study on Sign-aware Perturbations Regression (SaPR), where the observed response variables contain the aware sign (negative or positive) perturbations. In order to predict the non-perturb...
来源: 评论
Adaptive Joint Attention with Reinforcement Training for Convolutional Image Caption  1st
Adaptive Joint Attention with Reinforcement Training for C...
收藏 引用
1st International Workshop on Human Brain and Artificial intelligence, HBAI 2019, held in conjunction with the 28th International Joint Conference on Artificial intelligence, IJCAI 2019
作者: Chen, Ruoyu Li, Zhongnian Zhang, Daoqiang College of Computer Science and Technology MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing China
A convolutional decoder for image caption has proven to be easier to train than the Long Short Term Memory (LSTM) decoder [2]. However, previous convolutional image captioning methods are not good at capture the relat... 详细信息
来源: 评论