咨询与建议

限定检索结果

文献类型

  • 149 篇 期刊文献
  • 79 篇 会议

馆藏范围

  • 228 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 157 篇 工学
    • 127 篇 计算机科学与技术...
    • 111 篇 软件工程
    • 28 篇 控制科学与工程
    • 21 篇 光学工程
    • 21 篇 信息与通信工程
    • 21 篇 生物工程
    • 19 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电气工程
    • 6 篇 机械工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
  • 84 篇 理学
    • 55 篇 数学
    • 24 篇 生物学
    • 18 篇 统计学(可授理学、...
    • 17 篇 系统科学
    • 14 篇 物理学
    • 8 篇 化学
  • 31 篇 管理学
    • 18 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 10 篇 医学
    • 10 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 教育学
    • 4 篇 教育学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 12 篇 machine learning
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 7 篇 semantics
  • 6 篇 computational li...
  • 5 篇 object detection
  • 5 篇 reinforcement le...
  • 5 篇 task analysis
  • 5 篇 neuroimaging
  • 5 篇 benchmarking
  • 5 篇 stochastic syste...
  • 4 篇 deep learning
  • 4 篇 distillation
  • 4 篇 iterative method...
  • 4 篇 learning algorit...
  • 4 篇 visualization
  • 3 篇 semantic segment...
  • 3 篇 deep neural netw...
  • 3 篇 training data
  • 3 篇 adversarial mach...

机构

  • 80 篇 miit key laborat...
  • 66 篇 college of compu...
  • 27 篇 college of compu...
  • 16 篇 miit key laborat...
  • 13 篇 miit key laborat...
  • 10 篇 collaborative in...
  • 8 篇 college of compu...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 department of el...
  • 5 篇 the college of c...
  • 4 篇 chongqing jiaoto...
  • 4 篇 riken center for...
  • 4 篇 nanyang technolo...
  • 4 篇 department of ma...
  • 4 篇 college of compu...
  • 4 篇 school of comput...
  • 4 篇 school of comput...
  • 4 篇 college of compu...

作者

  • 47 篇 chen songcan
  • 23 篇 li piji
  • 23 篇 huang sheng-jun
  • 18 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 16 篇 sheng-jun huang
  • 16 篇 liang dong
  • 15 篇 songcan chen
  • 11 篇 tan xiaoyang
  • 9 篇 geng chuanxing
  • 9 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 7 篇 wei mingqiang
  • 7 篇 li zhongnian
  • 7 篇 ming-kun xie
  • 6 篇 xie ming-kun
  • 6 篇 wang renzhi
  • 6 篇 li weikai
  • 6 篇 tao lue

语言

  • 216 篇 英文
  • 10 篇 其他
  • 5 篇 中文
检索条件"机构=MIIT Key Laboratory of Pattern Analysis and Machine Intelligence"
228 条 记 录,以下是81-90 订阅
排序:
Robust Action Gap Increasing with Clipped Advantage Learning
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Zhe Gan, Yaozhong Tan, Xiaoyang College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China Miit Key Laboratory of Pattern Analysis and Machine Intelligence
Advantage Learning (AL) seeks to increase the action gap between the optimal action and its competitors, so as to improve the robustness to estimation errors. However, the method becomes problematic when the optimal a... 详细信息
来源: 评论
An Improved Algorithm for Spiking Neural Networks with Multi-Scale Attention Coding
An Improved Algorithm for Spiking Neural Networks with Multi...
收藏 引用
Cyber-Physical Social intelligence (ICCSI), International Conference on
作者: Sisi Chen Xiaofeng Chen Weikai Li Department of Mathematics Chongqing Jiaotong University Chongqing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Spiking Neural Networks (SNNs), driven by spike-based mechanisms, are known for their high efficiency and low energy consumption, which makes them ideal for applications like image classification, object detection, an... 详细信息
来源: 评论
Unlocking the Power of Open Set: A New Perspective for Open-Set Noisy Label Learning
arXiv
收藏 引用
arXiv 2023年
作者: Wan, Wenhai Wang, Xinrui Xie, Ming-Kun Li, Shao-Yuan Huang, Sheng-Jun Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China
Learning from noisy data has attracted much attention, where most methods focus on closed-set label noise. However, a more common scenario in the real world is the presence of both open-set and closed-set noise. Exist... 详细信息
来源: 评论
Label-aware global consistency for multi-label learning with single positive labels  22
Label-aware global consistency for multi-label learning with...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Ming-Kun Xie Jia-Hao Xiao Sheng-Jun Huang College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing
In single positive multi-label learning (SPML), only one of multiple positive labels is observed for each instance. The previous work trains the model by simply treating unobserved labels as negative ones, and designs...
来源: 评论
A Multilayer Maximum Spanning Tree Kernel For Brain Networks
A Multilayer Maximum Spanning Tree Kernel For Brain Networks
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Xiaoxin Wang Xuyun Wen Kai Ma Daoqiang Zhang MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China
The brain network has been widely used for the construction of diverse brain disease diagnosis models. Among these models, an important and challenging task is how to quantify the network similarity. Although many gra... 详细信息
来源: 评论
Research on Indoor Passive Location Based on LoRa Fingerprint  1
收藏 引用
6th EAI International Conference on machine Learning and Intelligent Communications, MLICOM 2021
作者: Wang, Heng Chen, Yuzhen Zhang, Qingheng Zhang, Shifan Ye, Haibo Li, Xuan-Song School of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Jiangsu Nanjing China School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China State Key Laboratory for Novel Software Technology Nanjing University Nanjing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Indoor positioning based on signal fingerprint has always been a hot research topic. But most research requires the object or person to be positioned to carry a positioning device, which is not applicable in some spec... 详细信息
来源: 评论
Smoothing Advantage Learning
arXiv
收藏 引用
arXiv 2022年
作者: Gan, Yaozhong Zhang, Zhe Tan, Xiaoyang College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China
Advantage learning (AL) aims to improve the robustness of value-based reinforcement learning against estimation errors with action-gap-based regularization. Unfortunately, the method tends to be unstable in the case o... 详细信息
来源: 评论
Implicit Stochastic Gradient Descent for Training Physics-informed Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Li, Ye Chen, Song-Can Huang, Sheng-Jun College of Computer Science and Technology/Artificial Intelligence Nanjing University of Aeronautics Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems, but they are still trapped in training failures when the target functions to b... 详细信息
来源: 评论
All Beings Are Equal in Open Set Recognition
arXiv
收藏 引用
arXiv 2024年
作者: Li, Chaohua Zhang, Enhao Geng, Chuanxing Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China
In open-set recognition (OSR), a promising strategy is exploiting pseudo-unknown data outside given K known classes as an additional K+1-th class to explicitly model potential open space. However, treating unknown cla... 详细信息
来源: 评论
TimeCHEAT: A Channel Harmony Strategy for Irregularly Sampled Multivariate Time Series analysis
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Jiexi Cao, Meng Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China
Irregularly sampled multivariate time series (ISMTS) are prevalent in reality. Due to their non-uniform intervals between successive observations and varying sampling rates among series, the channel-independent (CI) s... 详细信息
来源: 评论