咨询与建议

限定检索结果

文献类型

  • 184 篇 期刊文献
  • 148 篇 会议

馆藏范围

  • 332 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 198 篇 工学
    • 159 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 39 篇 控制科学与工程
    • 24 篇 信息与通信工程
    • 24 篇 生物工程
    • 21 篇 光学工程
    • 20 篇 生物医学工程(可授...
    • 10 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 力学(可授工学、理...
    • 6 篇 机械工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 安全科学与工程
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
    • 3 篇 建筑学
  • 112 篇 理学
    • 79 篇 数学
    • 33 篇 统计学(可授理学、...
    • 27 篇 生物学
    • 23 篇 系统科学
    • 16 篇 物理学
    • 8 篇 化学
  • 35 篇 管理学
    • 23 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 11 篇 医学
    • 11 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 32 篇 pattern analysis
  • 30 篇 machine intellig...
  • 20 篇 neural networks
  • 17 篇 laboratories
  • 15 篇 design engineeri...
  • 15 篇 system analysis ...
  • 14 篇 machine learning
  • 11 篇 pattern recognit...
  • 10 篇 training
  • 8 篇 image segmentati...
  • 8 篇 learning
  • 7 篇 convergence
  • 7 篇 contrastive lear...
  • 7 篇 semantics
  • 6 篇 object detection
  • 6 篇 reinforcement le...
  • 6 篇 deep neural netw...
  • 6 篇 systems engineer...
  • 6 篇 voting
  • 6 篇 feature extracti...

机构

  • 87 篇 miit key laborat...
  • 74 篇 college of compu...
  • 28 篇 college of compu...
  • 18 篇 department of el...
  • 18 篇 department of el...
  • 16 篇 miit key laborat...
  • 15 篇 miit key laborat...
  • 11 篇 collaborative in...
  • 10 篇 department of st...
  • 9 篇 college of compu...
  • 9 篇 pattern analysis...
  • 8 篇 pattern analysis...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 school of comput...
  • 5 篇 department of el...
  • 5 篇 the college of c...
  • 5 篇 pattern analysis...
  • 4 篇 department of st...

作者

  • 52 篇 chen songcan
  • 25 篇 huang sheng-jun
  • 21 篇 ghojogh benyamin
  • 21 篇 li piji
  • 21 篇 karray fakhri
  • 21 篇 crowley mark
  • 19 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 17 篇 sheng-jun huang
  • 17 篇 songcan chen
  • 16 篇 liang dong
  • 15 篇 m. kamel
  • 15 篇 ghodsi ali
  • 13 篇 tan xiaoyang
  • 12 篇 geng chuanxing
  • 10 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 8 篇 m.s. kamel
  • 7 篇 wei mingqiang

语言

  • 280 篇 英文
  • 50 篇 其他
  • 5 篇 中文
检索条件"机构=MIITKey Laboratory of Pattern Analysis and Machine Intelligence"
332 条 记 录,以下是91-100 订阅
排序:
ALL-E: Aesthetics-guided Low-light Image Enhancement
arXiv
收藏 引用
arXiv 2023年
作者: Li, Ling Liang, Dong Gao, Yuanhang Huang, Sheng-Jun Chen, Songcan Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization China
Evaluating the performance of low-light image enhancement (LLE) is highly subjective, thus making integrating human preferences into image enhancement a necessity. Existing methods fail to consider this and present a ... 详细信息
来源: 评论
Adaptive Mirror Descent Bilevel Optimization
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Feihu College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
In the paper, we propose a class of efficient adaptive bilevel methods based on mirror descent for nonconvex bilevel optimization, where its upper-level problem is nonconvex possibly with nonsmooth regularization, and... 详细信息
来源: 评论
Class-Aware Feature Perturbation for Long-Tailed Visual Recognition
Class-Aware Feature Perturbation for Long-Tailed Visual Reco...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Xicheng Chen Haibo Ye Fangyu Zhou College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China Collaborative Innovation Center of Novel Software Technology and Industrialization
The distribution of data in the real world is often imbalanced, with a small number of classes having a large number of instances, while most other classes have relatively few sample instances, resulting in a long-tai... 详细信息
来源: 评论
GBCI: Adaptive Frequency Band Learning for Gender Recognition in Brain-Computer Interfaces  1st
GBCI: Adaptive Frequency Band Learning for Gender Recogniti...
收藏 引用
1st CAAI International Conference on Artificial intelligence, CICAI 2021
作者: Wang, Pengpai Zhou, Yueying Li, Zhongnian Zhang, Daoqiang College of Computer Science and Technology MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing211106 China
In recent years, with the rapid development of brain-computer interface (BCI) technology, various applications based on BCI have generated significant interest. A motivating application of BCI is predicting human gend... 详细信息
来源: 评论
Filter, Obstruct and Dilute: Defending Against Backdoor Attacks on Semi-Supervised Learning
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Xinrui Geng, Chuanxing Wan, Wenhai Li, Shao-Yuan Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China School of Computer Science and Technology Huazhong University of Science and Technology China
Recent studies have verified that semi-supervised learning (SSL) is vulnerable to data poisoning backdoor attacks. Even a tiny fraction of contaminated training data is sufficient for adversaries to manipulate up to 9... 详细信息
来源: 评论
Generative Visual Commonsense Answering and Explaining with Generative Scene Graph Constructing
arXiv
收藏 引用
arXiv 2025年
作者: Yuan, Fan Fang, Xiaoyuan Quan, Rong Li, Jing Bi, Wei Xu, Xiaogang Li, Piji College of Artificial Intelligence Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing211106 China College of Artificial Intelligence Nanjing University of Aeronautics and Astronautics Key Laboratory of Brain-Machine Intelligence Technology Ministry of Education Nanjing211106 China Department of Computing The Hong Kong Polytechnic University Hong Kong The Chinese University of Hong Kong Hong Kong
Visual Commonsense Reasoning, which is regarded as one challenging task to pursue advanced visual scene comprehension, has been used to diagnose the reasoning ability of AI systems. However, reliable reasoning require... 详细信息
来源: 评论
Unlocking Better Closed-Set Alignment Based on Neural Collapse for Open-Set Recognition  39
Unlocking Better Closed-Set Alignment Based on Neural Collap...
收藏 引用
39th Annual AAAI Conference on Artificial intelligence, AAAI 2025
作者: Li, Chaohua Zhang, Enhao Geng, Chuanxing Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China Department of Computer Science Hong Kong Baptist University Hong Kong
In recent Open-set Recognition (OSR) community, a prevailing belief is that enhancing the discriminative boundaries of closed-set classes can improve the robustness of Deep Neural Networks (DNNs) against open data dur... 详细信息
来源: 评论
Characteristic AI Agents via Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Xi Dai, Hongliang Gao, Shen Li, Piji College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China School of Computer Science and Technology Shandong University China
The advancement of Large Language Models (LLMs) has led to significant enhancements in the performance of chatbot systems. Many researchers have dedicated their efforts to the development of bringing characteristics t... 详细信息
来源: 评论
PIE: Physics-inspired Low-light Enhancement
arXiv
收藏 引用
arXiv 2024年
作者: Liang, Dong Xu, Zhengyan Li, Ling Wei, Mingqiang Chen, Songcan MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China Nanjing Universily of Aeronautics Astronautics Shenzhen Research Institute China
In this paper, we propose a physics-inspired contrastive learning paradigm for low-light enhancement, called PIE. PIE primarily addresses three issues: (i) To resolve the problem of existing learning-based methods oft... 详细信息
来源: 评论
Class-distribution-aware pseudo-labeling for semi-supervised multi-label learning  23
Class-distribution-aware pseudo-labeling for semi-supervised...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Ming-Kun Xie Jia-Hao Xiao Hao-Zhe Liu Gang Niu Masashi Sugiyama Sheng-Jun Huang Nanjing University of Aeronautics and Astronautics and MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China RIKEN Center for Advanced Intelligence Project RIKEN Center for Advanced Intelligence Project and The University of Tokyo Tokyo Japan
Pseudo-labeling has emerged as a popular and effective approach for utilizing unlabeled data. However, in the context of semi-supervised multi-label learning (SSMLL), conventional pseudo-labeling methods encounter dif...
来源: 评论