咨询与建议

限定检索结果

文献类型

  • 184 篇 期刊文献
  • 148 篇 会议

馆藏范围

  • 332 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 198 篇 工学
    • 159 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 39 篇 控制科学与工程
    • 24 篇 信息与通信工程
    • 24 篇 生物工程
    • 21 篇 光学工程
    • 20 篇 生物医学工程(可授...
    • 10 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 力学(可授工学、理...
    • 6 篇 机械工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 安全科学与工程
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
    • 3 篇 建筑学
  • 112 篇 理学
    • 79 篇 数学
    • 33 篇 统计学(可授理学、...
    • 27 篇 生物学
    • 23 篇 系统科学
    • 16 篇 物理学
    • 8 篇 化学
  • 35 篇 管理学
    • 23 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 11 篇 医学
    • 11 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 32 篇 pattern analysis
  • 30 篇 machine intellig...
  • 20 篇 neural networks
  • 17 篇 laboratories
  • 15 篇 design engineeri...
  • 15 篇 system analysis ...
  • 14 篇 machine learning
  • 11 篇 pattern recognit...
  • 10 篇 training
  • 8 篇 image segmentati...
  • 8 篇 learning
  • 7 篇 convergence
  • 7 篇 contrastive lear...
  • 7 篇 semantics
  • 6 篇 object detection
  • 6 篇 reinforcement le...
  • 6 篇 deep neural netw...
  • 6 篇 systems engineer...
  • 6 篇 voting
  • 6 篇 feature extracti...

机构

  • 87 篇 miit key laborat...
  • 74 篇 college of compu...
  • 28 篇 college of compu...
  • 18 篇 department of el...
  • 18 篇 department of el...
  • 16 篇 miit key laborat...
  • 15 篇 miit key laborat...
  • 11 篇 collaborative in...
  • 10 篇 department of st...
  • 9 篇 college of compu...
  • 9 篇 pattern analysis...
  • 8 篇 pattern analysis...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 school of comput...
  • 5 篇 department of el...
  • 5 篇 the college of c...
  • 5 篇 pattern analysis...
  • 4 篇 department of st...

作者

  • 52 篇 chen songcan
  • 25 篇 huang sheng-jun
  • 21 篇 ghojogh benyamin
  • 21 篇 li piji
  • 21 篇 karray fakhri
  • 21 篇 crowley mark
  • 19 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 17 篇 sheng-jun huang
  • 17 篇 songcan chen
  • 16 篇 liang dong
  • 15 篇 m. kamel
  • 15 篇 ghodsi ali
  • 13 篇 tan xiaoyang
  • 12 篇 geng chuanxing
  • 10 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 8 篇 m.s. kamel
  • 7 篇 wei mingqiang

语言

  • 280 篇 英文
  • 50 篇 其他
  • 5 篇 中文
检索条件"机构=MIITKey Laboratory of Pattern Analysis and Machine Intelligence"
332 条 记 录,以下是101-110 订阅
排序:
Guidance Not Obstruction: A Conjugate Consistent Enhanced Strategy for Domain Generalization
arXiv
收藏 引用
arXiv 2024年
作者: Cao, Meng Chen, Songcan The MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing210016 China The College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing210016 China
Domain generalization addresses domain shift in real-world applications. Most approaches adopt a domain angle, seeking invariant representation across domains by aligning their marginal distributions, irrespective of ...
来源: 评论
Pathformer3D: A 3D Scanpath Transformer for 360° Images
arXiv
收藏 引用
arXiv 2024年
作者: Quan, Rong Lai, Yantao Qiu, Mengyu Liang, Dong College of Artificial Intelligence Nanjing University of Aeronautics and Astronautics The Key Laboratory of Brain-Machine Intelligence Technology Ministry of Education Nanjing211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China Shenzhen Research Institute Nanjing University of Aeronautics and Astronautics Shenzhen China
Scanpath prediction in 360° images can help realize rapid rendering and better user interaction in Virtual/Augmented Reality applications. However, existing scanpath prediction models for 360° images execute... 详细信息
来源: 评论
Recovering from out-of-sample states via inverse dynamics in offline reinforcement learning  23
Recovering from out-of-sample states via inverse dynamics in...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Ke Jiang Jia-yu Yao Xiaoyang Tan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics and MIIT Key Laboratory of Pattern Analysis and Machine Intelligence School of Electronic and Computer Engineering Peking University
We deal with the state distributional shift problem commonly encountered in offline reinforcement learning during test, where the agent tends to take unreliable actions at out-of-sample (unseen) states. Our idea is to...
来源: 评论
XL2Bench: A Benchmark for Extremely Long Context Understanding with Long-range Dependencies
arXiv
收藏 引用
arXiv 2024年
作者: Ni, Xuanfan Cai, Hengyi Wei, Xiaochi Wang, Shuaiqiang Yin, Dawei Li, Piji Nanjing University of Aeronautics and Astronautics Nanjing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China Institute of Computing Technology CAS Beijing China Baidu Inc. Beijing China
Large Language Models (LLMs) have demonstrated remarkable performance across diverse tasks but are constrained by their small context window sizes. Various efforts have been proposed to expand the context window to ac... 详细信息
来源: 评论
Forgetting, Ignorance or Myopia: Revisiting Key Challenges in Online Continual Learning
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Xinrui Geng, Chuanxing Wan, Wenhai Li, Shao-Yuan Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China School of Computer Science and Technology Huazhong University of Science and Technology China
Online continual learning (OCL) requires the models to learn from constant, endless streams of data. While significant efforts have been made in this field, most were focused on mitigating the catastrophic forgetting ... 详细信息
来源: 评论
Relative Difficulty Distillation for Semantic Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Liang, Dong Sun, Yue Du, Yun Chen, Songcan Huang, Sheng-Jun MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing211106 China Nanjing University of Aeronautics Astronautics Shenzhen Research Institute China
Current knowledge distillation (KD) methods primarily focus on transferring various structured knowledge and designing corresponding optimization goals to encourage the student network to imitate the output of the tea... 详细信息
来源: 评论
Improving Generalization of Deep Neural Networks by Optimum Shifting  39
Improving Generalization of Deep Neural Networks by Optimum ...
收藏 引用
39th Annual AAAI Conference on Artificial intelligence, AAAI 2025
作者: Zhou, Yuyan Li, Ye Feng, Lei Huang, Sheng-Jun MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing211106 China Information Systems Technology and Design Pillar Singapore University of Technology and Design Singapore
Recent studies showed that the generalization of neural networks is correlated with the sharpness of the loss landscape, and flat minima suggests a better generalization ability than sharp minima. In this paper, we pr... 详细信息
来源: 评论
Topology Reorganized Graph Contrastive Learning with Mitigating Semantic Drift
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Jiaqiang Chen, Songcan College of Computer Science & Technology Nanjing University of Aeronautics & Astronautics Jiangsu Nanjing211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics & Astronautics Jiangsu Nanjing211106 China
Graph contrastive learning (GCL) is an effective paradigm for node representation learning in graphs. The key components hidden behind GCL are data augmentation and positive-negative pair selection. Typical data augme... 详细信息
来源: 评论
StructSR: Refuse Spurious Details in Real-World Image Super-Resolution  39
StructSR: Refuse Spurious Details in Real-World Image Super-...
收藏 引用
39th Annual AAAI Conference on Artificial intelligence, AAAI 2025
作者: Li, Yachao Liang, Dong Ding, Tianyu Huang, Sheng-Jun College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing211106 China Microsoft Washington United States
Diffusion-based models have shown great promise in real-world image super-resolution (Real-ISR), but often generate content with structural errors and spurious texture details due to the empirical priors and illusions...
来源: 评论
StructSR: Refuse Spurious Details in Real-World Image Super-Resolution
arXiv
收藏 引用
arXiv 2025年
作者: Li, Yachao Liang, Dong Ding, Tianyu Huang, Sheng-Jun College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing211106 China Microsoft Washington United States
Diffusion-based models have shown great promise in real-world image super-resolution (Real-ISR), but often generate content with structural errors and spurious texture details due to the empirical priors and illusions... 详细信息
来源: 评论