咨询与建议

限定检索结果

文献类型

  • 184 篇 期刊文献
  • 148 篇 会议

馆藏范围

  • 332 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 198 篇 工学
    • 159 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 39 篇 控制科学与工程
    • 24 篇 信息与通信工程
    • 24 篇 生物工程
    • 21 篇 光学工程
    • 20 篇 生物医学工程(可授...
    • 10 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 力学(可授工学、理...
    • 6 篇 机械工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 安全科学与工程
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
    • 3 篇 建筑学
  • 112 篇 理学
    • 79 篇 数学
    • 33 篇 统计学(可授理学、...
    • 27 篇 生物学
    • 23 篇 系统科学
    • 16 篇 物理学
    • 8 篇 化学
  • 35 篇 管理学
    • 23 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 11 篇 医学
    • 11 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 32 篇 pattern analysis
  • 30 篇 machine intellig...
  • 20 篇 neural networks
  • 17 篇 laboratories
  • 15 篇 design engineeri...
  • 15 篇 system analysis ...
  • 14 篇 machine learning
  • 11 篇 pattern recognit...
  • 10 篇 training
  • 8 篇 image segmentati...
  • 8 篇 learning
  • 7 篇 convergence
  • 7 篇 contrastive lear...
  • 7 篇 semantics
  • 6 篇 object detection
  • 6 篇 reinforcement le...
  • 6 篇 deep neural netw...
  • 6 篇 systems engineer...
  • 6 篇 voting
  • 6 篇 feature extracti...

机构

  • 87 篇 miit key laborat...
  • 74 篇 college of compu...
  • 28 篇 college of compu...
  • 18 篇 department of el...
  • 18 篇 department of el...
  • 16 篇 miit key laborat...
  • 15 篇 miit key laborat...
  • 11 篇 collaborative in...
  • 10 篇 department of st...
  • 9 篇 college of compu...
  • 9 篇 pattern analysis...
  • 8 篇 pattern analysis...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 school of comput...
  • 5 篇 department of el...
  • 5 篇 the college of c...
  • 5 篇 pattern analysis...
  • 4 篇 department of st...

作者

  • 52 篇 chen songcan
  • 25 篇 huang sheng-jun
  • 21 篇 ghojogh benyamin
  • 21 篇 li piji
  • 21 篇 karray fakhri
  • 21 篇 crowley mark
  • 19 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 17 篇 sheng-jun huang
  • 17 篇 songcan chen
  • 16 篇 liang dong
  • 15 篇 m. kamel
  • 15 篇 ghodsi ali
  • 13 篇 tan xiaoyang
  • 12 篇 geng chuanxing
  • 10 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 8 篇 m.s. kamel
  • 7 篇 wei mingqiang

语言

  • 280 篇 英文
  • 50 篇 其他
  • 5 篇 中文
检索条件"机构=MIITKey Laboratory of Pattern Analysis and Machine Intelligence"
332 条 记 录,以下是131-140 订阅
排序:
Deep Self-Reconstruction Sparse Canonical Correlation analysis For Brain Imaging Genetics
Deep Self-Reconstruction Sparse Canonical Correlation Analys...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Meiling Wang Wei Shao Shuo Huang Daoqiang Zhang MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics
Brain imaging genetics is an emerging research field to explore the underlying genetic architecture of brain structure and function measured by different imaging modalities. As a bi-multivariate technique for brain im... 详细信息
来源: 评论
FedDA: Faster Framework of Local Adaptive Gradient Methods via Restarted Dual Averaging
arXiv
收藏 引用
arXiv 2023年
作者: Li, Junyi Huang, Feihu Huang, Heng Department of Electrical and Computer Engineering University of Pittsburgh Pittsburgh United States College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Federated learning (FL) is an emerging learning paradigm to tackle massively distributed data. In Federated Learning, a set of clients jointly perform a machine learning task under the coordination of a server. The Fe... 详细信息
来源: 评论
Exploiting Saliency in Attention Based Convolutional Neural Network for Classification of Vertical Root Fractures  25th
Exploiting Saliency in Attention Based Convolutional Neural ...
收藏 引用
25th International Conference on pattern Recognition Workshops, ICPR 2020
作者: Xu, Zhenxing Wan, Peng Aihemaiti, Gulibire Zhang, Daoqiang MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China Affiliated Stomatology Hospital of Medical School Nanjing University Nanjing China
Cone-beam computed tomography (CBCT) is widely used in clinical diagnosis of vertical root fractures (VRFs) which presents as crack on the teeth. However, manually checking the VRFs from a larger number of CBCT images... 详细信息
来源: 评论
MLC-NC: Long-Tailed Multi-Label Image Classification Through the Lens of Neural Collapse  39
MLC-NC: Long-Tailed Multi-Label Image Classification Through...
收藏 引用
39th Annual AAAI Conference on Artificial intelligence, AAAI 2025
作者: Tao, Zijian Li, Shao-Yuan Wan, Wenhai Zheng, Jinpeng Chen, Jia-Yao Li, Yuchen Huang, Sheng-Jun Chen, Songcan MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China State Key Laboratory for Novel Software Technology Nanjing University China School of Computer Science and Technology Huazhong University of Science and Technology China College of Computer and Software Hohai University China
Long-tailed (LT) data distribution is common in multi-label image classification (MLC) and can significantly impact the performance of classification models. One reason is the challenge of learning unbiased instance r... 详细信息
来源: 评论
Multi-Label Knowledge Distillation
Multi-Label Knowledge Distillation
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Penghui Yang Ming-Kun Xie Chen-Chen Zong Lei Feng Gang Niu Masashi Sugiyama Sheng-Jun Huang College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China School of Computer Science and Engineering Nanyang Technological University Singapore RIKEN Center for Advanced Intelligence Project The University of Tokyo Tokyo Japan
Existing knowledge distillation methods typically work by imparting the knowledge of output logits or intermediate feature maps from the teacher network to the student network, which is very successful in multi-class ...
来源: 评论
Reconstruction Enhanced Multi-View Contrastive Learning for Anomaly Detection on Attributed Networks
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Jiaqiang Wang, Senzhang Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China Central South University China
Detecting abnormal nodes from attributed networks is of great importance in many real applications, such as financial fraud detection and cyber security. This task is challenging due to both the complex interactions b... 详细信息
来源: 评论
Bayesian compressive principal component analysis
收藏 引用
Frontiers of Computer Science 2020年 第4期14卷 29-38页
作者: Di MA Songcan CHEN College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsNanjing211106China College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsMIIT Key Laboratory of Pattern Analysis and Machine IntelligenceNanjing211106China
Principal component analysis(PCA)is a widely used method for multivariate data analysis that projects the original high-dimensional data onto a low-dimensional subspace with maximum ***,in practice,we would be more li... 详细信息
来源: 评论
Bi-Grid Reconstruction for Image Anomaly Detection
arXiv
收藏 引用
arXiv 2025年
作者: Huang, Huichuan Zhong, Zhiqing Wei, Guangyu Wan, Yonghao Sun, Wenlong Feng, Aimin Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China
—In image anomaly detection, significant advancements have been made using un- and self-supervised methods with datasets containing only normal samples. However, these approaches often struggle with fine-grained anom... 详细信息
来源: 评论
Multi-Label Knowledge Distillation
arXiv
收藏 引用
arXiv 2023年
作者: Yang, Penghui Xie, Ming-Kun Zong, Chen-Chen Feng, Lei Niu, Gang Sugiyama, Masashi Huang, Sheng-Jun College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China School of Computer Science and Engineering Nanyang Technological University Singapore RIKEN Center for Advanced Intelligence Project Japan The University of Tokyo Tokyo Japan
Existing knowledge distillation methods typically work by imparting the knowledge of output logits or intermediate feature maps from the teacher network to the student network, which is very successful in multi-class ... 详细信息
来源: 评论
Cprnc: Channels Pruning Via Reverse Neuron Crowding for Model Compression
SSRN
收藏 引用
SSRN 2023年
作者: Wu, Pingfan Huang, Hengyi Sun, Han Liang, Dong Liu, Ningzhong College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing211106 China Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing211106 China
Channel pruning is an efficient technique for model compression, removing redundant parts of a convolutional neural network with minor degradation in classification accuracy. Previous criteria of channel pruning ignor... 详细信息
来源: 评论