咨询与建议

限定检索结果

文献类型

  • 184 篇 期刊文献
  • 148 篇 会议

馆藏范围

  • 332 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 198 篇 工学
    • 159 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 39 篇 控制科学与工程
    • 24 篇 信息与通信工程
    • 24 篇 生物工程
    • 21 篇 光学工程
    • 20 篇 生物医学工程(可授...
    • 10 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 力学(可授工学、理...
    • 6 篇 机械工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 安全科学与工程
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
    • 3 篇 建筑学
  • 112 篇 理学
    • 79 篇 数学
    • 33 篇 统计学(可授理学、...
    • 27 篇 生物学
    • 23 篇 系统科学
    • 16 篇 物理学
    • 8 篇 化学
  • 35 篇 管理学
    • 23 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 11 篇 医学
    • 11 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 32 篇 pattern analysis
  • 30 篇 machine intellig...
  • 20 篇 neural networks
  • 17 篇 laboratories
  • 15 篇 design engineeri...
  • 15 篇 system analysis ...
  • 14 篇 machine learning
  • 11 篇 pattern recognit...
  • 10 篇 training
  • 8 篇 image segmentati...
  • 8 篇 learning
  • 7 篇 convergence
  • 7 篇 contrastive lear...
  • 7 篇 semantics
  • 6 篇 object detection
  • 6 篇 reinforcement le...
  • 6 篇 deep neural netw...
  • 6 篇 systems engineer...
  • 6 篇 voting
  • 6 篇 feature extracti...

机构

  • 87 篇 miit key laborat...
  • 74 篇 college of compu...
  • 28 篇 college of compu...
  • 18 篇 department of el...
  • 18 篇 department of el...
  • 16 篇 miit key laborat...
  • 15 篇 miit key laborat...
  • 11 篇 collaborative in...
  • 10 篇 department of st...
  • 9 篇 college of compu...
  • 9 篇 pattern analysis...
  • 8 篇 pattern analysis...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 school of comput...
  • 5 篇 department of el...
  • 5 篇 the college of c...
  • 5 篇 pattern analysis...
  • 4 篇 department of st...

作者

  • 52 篇 chen songcan
  • 25 篇 huang sheng-jun
  • 21 篇 ghojogh benyamin
  • 21 篇 li piji
  • 21 篇 karray fakhri
  • 21 篇 crowley mark
  • 19 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 17 篇 sheng-jun huang
  • 17 篇 songcan chen
  • 16 篇 liang dong
  • 15 篇 m. kamel
  • 15 篇 ghodsi ali
  • 13 篇 tan xiaoyang
  • 12 篇 geng chuanxing
  • 10 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 8 篇 m.s. kamel
  • 7 篇 wei mingqiang

语言

  • 280 篇 英文
  • 50 篇 其他
  • 5 篇 中文
检索条件"机构=MIITKey Laboratory of Pattern Analysis and Machine Intelligence"
332 条 记 录,以下是151-160 订阅
排序:
Group-Specific Fusion Model and Its Application in Identifying Multimodal Co-varying Diagnostic patterns for Psychiatric Disorders  4th
Group-Specific Fusion Model and Its Application in Identifyi...
收藏 引用
4th International Workshop on Human Brain and Artificial intelligence, HBAI 2024
作者: Cao, Siyuan Liang, Chuang Zhu, Qi Jiang, Rongtao Zhang, Daoqiang Calhoun, Vince D. Qi, Shile Department of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China Key Laboratory of Brain-Machine Intelligence Technology Ministry of Education Nanjing University of Aeronautics and Astronautics Nanjing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing China Georgia State University Georgia Institute of Technology Emory University AtlantaGA United States Department of Radiology and Biomedical Imaging Yale University New HavenCT United States
Multimodal fusion offers a complementary perspective for understanding brain function and structure. Nevertheless, most existing multimodal fusion methods are unsupervised and thus ignore the diagnostic information. P... 详细信息
来源: 评论
A Cooperative-Competitive Multi-Agent Framework for Auto-bidding in Online Advertising
arXiv
收藏 引用
arXiv 2021年
作者: Wen, Chao Xu, Miao Zhang, Zhilin Zheng, Zhenzhe Wang, Yuhui Liu, Xiangyu Rong, Yu Xie, Dong Tan, Xiaoyang Yu, Chuan Xu, Jian Wu, Fan Chen, Guihai Zhu, Xiaoqiang Zheng, Bo MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China Shanghai Jiao Tong University China Alibaba Group China
In online advertising, auto-bidding has become an essential tool for advertisers to optimize their preferred ad performance metrics by simply expressing high-level campaign objectives and constraints. Previous works d... 详细信息
来源: 评论
A Multilayer Maximum Spanning Tree Kernel For Brain Networks
A Multilayer Maximum Spanning Tree Kernel For Brain Networks
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Xiaoxin Wang Xuyun Wen Kai Ma Daoqiang Zhang MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China
The brain network has been widely used for the construction of diverse brain disease diagnosis models. Among these models, an important and challenging task is how to quantify the network similarity. Although many gra... 详细信息
来源: 评论
Coupling Global Context and Local Contents for Weakly-Supervised Semantic Segmentation
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Chunyan Zhang, Dong Zhang, Liyan Tang, Jinhui The School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China The College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing211106 China
Thanks to the advantages of the friendly annotations and the satisfactory performance, Weakly-Supervised Semantic Segmentation (WSSS) approaches have been extensively studied. Recently, the single-stage WSSS was awake... 详细信息
来源: 评论
Learning Multi-Tasks with Inconsistent Labels by using Auxiliary Big Task
arXiv
收藏 引用
arXiv 2022年
作者: Feng, Quan Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Jiangsu Nanjing211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Jiangsu Nanjing211106 China
Multi-task learning is to improve the performance of the model by transferring and exploiting common knowledge among tasks. Existing MTL works mainly focus on the scenario where label sets among multiple tasks (MTs) a... 详细信息
来源: 评论
Rectified euler k-means and beyond
arXiv
收藏 引用
arXiv 2021年
作者: Lin, Yunxia Chen, Songcan College of Computer Science and Technology College of Artificial Intelligence Nanjing University of Aeronautics and Astronautics Nanjing211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence
Euler k-means (EulerK) first maps data onto the unit hyper-sphere surface of equi-dimensional space via a complex mapping which induces the robust Euler kernel and next employs the popular k-means. Consequently, besid... 详细信息
来源: 评论
Incremental Multi-Label Learning with Active Queries
收藏 引用
Journal of Computer Science & Technology 2020年 第2期35卷 234-246页
作者: Sheng-Jun Huang Guo-Xiang Li Wen-Yu Huang Shao-Yuan Li College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsNanjing 211106China Key Laboratory of Pattern Analysis and Machine Intelligence Ministry of Industry and Information Technology Nanjing University of Aeronautics and AstronauticsNanjing 211106China Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing University Nanjing 210023China
In multi-label learning,it is rather expensive to label instances since they are simultaneously associated with multiple ***,active learning,which reduces the labeling cost by actively querying the labels of the most ... 详细信息
来源: 评论
Weakly Supervised Crowdsourcing Learning Based on Adversarial Consensus
Weakly Supervised Crowdsourcing Learning Based on Adversaria...
收藏 引用
International Conference on Computational Science and Computational intelligence (CSCI)
作者: Meng-Long Wei Shao-Yuan Li Sheng-Jun Huang Ministry of Industry and Information Technology Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China
Crowdsourcing provides an efficient way to obtain labels for large datasets in the deep learning era. However, due to the non-expert workers, the annotations are usually ***, concerning the labeling cost, sparse annot... 详细信息
来源: 评论
Spectral, Probabilistic, and Deep Metric Learning: Tutorial and Survey
arXiv
收藏 引用
arXiv 2022年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on metric learning. Algorithms are divided into spectral, probabilistic, and deep metric learning. We first start with the definition of distance metric, Mahalanobis distance, and g... 详细信息
来源: 评论
Can adversarial training be manipulated by non-robust features?  22
Can adversarial training be manipulated by non-robust featur...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Lue Tao Lei Feng Hongxin Wei Jinfeng Yi Sheng-Jun Huang Songcan Chen National Key Laboratory for Novel Software Technology Nanjing University Nanjing China Chongqing University Chongqing China and RIKEN Center for Advanced Intelligence Project Japan Nanyang Technological University Singapore JD AI Research Beijing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing China
Adversarial training, originally designed to resist test-time adversarial examples, has shown to be promising in mitigating training-time availability attacks. This defense ability, however, is challenged in this pape...
来源: 评论