咨询与建议

限定检索结果

文献类型

  • 184 篇 期刊文献
  • 148 篇 会议

馆藏范围

  • 332 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 198 篇 工学
    • 159 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 39 篇 控制科学与工程
    • 24 篇 信息与通信工程
    • 24 篇 生物工程
    • 21 篇 光学工程
    • 20 篇 生物医学工程(可授...
    • 10 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 力学(可授工学、理...
    • 6 篇 机械工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 安全科学与工程
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
    • 3 篇 建筑学
  • 112 篇 理学
    • 79 篇 数学
    • 33 篇 统计学(可授理学、...
    • 27 篇 生物学
    • 23 篇 系统科学
    • 16 篇 物理学
    • 8 篇 化学
  • 35 篇 管理学
    • 23 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 11 篇 医学
    • 11 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 32 篇 pattern analysis
  • 30 篇 machine intellig...
  • 20 篇 neural networks
  • 17 篇 laboratories
  • 15 篇 design engineeri...
  • 15 篇 system analysis ...
  • 14 篇 machine learning
  • 11 篇 pattern recognit...
  • 10 篇 training
  • 8 篇 image segmentati...
  • 8 篇 learning
  • 7 篇 convergence
  • 7 篇 contrastive lear...
  • 7 篇 semantics
  • 6 篇 object detection
  • 6 篇 reinforcement le...
  • 6 篇 deep neural netw...
  • 6 篇 systems engineer...
  • 6 篇 voting
  • 6 篇 feature extracti...

机构

  • 87 篇 miit key laborat...
  • 74 篇 college of compu...
  • 28 篇 college of compu...
  • 18 篇 department of el...
  • 18 篇 department of el...
  • 16 篇 miit key laborat...
  • 15 篇 miit key laborat...
  • 11 篇 collaborative in...
  • 10 篇 department of st...
  • 9 篇 college of compu...
  • 9 篇 pattern analysis...
  • 8 篇 pattern analysis...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 school of comput...
  • 5 篇 department of el...
  • 5 篇 the college of c...
  • 5 篇 pattern analysis...
  • 4 篇 department of st...

作者

  • 52 篇 chen songcan
  • 25 篇 huang sheng-jun
  • 21 篇 ghojogh benyamin
  • 21 篇 li piji
  • 21 篇 karray fakhri
  • 21 篇 crowley mark
  • 19 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 17 篇 sheng-jun huang
  • 17 篇 songcan chen
  • 16 篇 liang dong
  • 15 篇 m. kamel
  • 15 篇 ghodsi ali
  • 13 篇 tan xiaoyang
  • 12 篇 geng chuanxing
  • 10 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 8 篇 m.s. kamel
  • 7 篇 wei mingqiang

语言

  • 280 篇 英文
  • 50 篇 其他
  • 5 篇 中文
检索条件"机构=MIITKey Laboratory of Pattern Analysis and Machine Intelligence"
332 条 记 录,以下是161-170 订阅
排序:
Dual-Correction Adaptation Network for Noisy Knowledge Transfer
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Yunyun Zheng, Weiwen Chen, Songcan The Jiangsu Key Laboratory of Big Data Security & Intelligent Processing Computer Science and Engineering Nanjing University of Posts & Telecommunications Nanjing210046 China The MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Computer Science & Technology/AI Nanjing University of Aeronautics & Astronautics Nanjing210023 China
Previous unsupervised domain adaptation (UDA) methods aim to promote target learning via a single-directional knowledge transfer from label-rich source domain to unlabeled target domain, while its reverse adaption fro... 详细信息
来源: 评论
A Multi-Layer Random Walk Method for Local Dynamic Community Detection in Brain Functional Network
A Multi-Layer Random Walk Method for Local Dynamic Community...
收藏 引用
2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021
作者: Wen, Xuyun Zhang, Daoqiang Nanjing University of Aeronautics and Astronautics College of Computer Science and Technology MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Jiangsu Nanjing China Nanjing University of Aeronautics and Astronautics College of Computer Science and Technology Jiangsu Nanjing China Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation Ministry of Education Shanghai China
Detecting the time-varying community structure of brain functional network is very important to reveal dynamic properties of the human brain. Although several community detection methods have been proposed, they are l... 详细信息
来源: 评论
Can Adversarial Training Be Manipulated By Non-Robust Features?
arXiv
收藏 引用
arXiv 2022年
作者: Tao, Lue Feng, Lei Wei, Hongxin Yi, Jinfeng Huang, Sheng-Jun Chen, Songcan National Key Laboratory for Novel Software Technology Nanjing University Nanjing China Chongqing University Chongqing China RIKEN Center for Advanced Intelligence Project Japan Nanyang Technological University Singapore JD AI Research Beijing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing China
Adversarial training, originally designed to resist test-time adversarial examples, has shown to be promising in mitigating training-time availability attacks. This defense ability, however, is challenged in this pape... 详细信息
来源: 评论
Discrimination-Aware Domain Adversarial Neural Network
收藏 引用
Journal of Computer Science & Technology 2020年 第2期35卷 259-267页
作者: Yun-Yun Wang Jian-Min Gu Chao Wang Song-Can Chen Hui Xue College of Computer Science and Engineering Nanjing University of Posts and Telecommunications Nanjing 210046China Jiangsu Key Laboratory of Big Data Security and Intelligent Processing Nanjing 210046China College of Computer Science and Technology/College of Artificial Intelligence Nanjing University of Aeronautics and AstronauticsNanjing 210023China Key Laboratory of Pattern Analysis and Machine Intelligence Ministry of Industry and Information Technology Nanjing 210023China School of Computer Science and Engineering Southeast UniversityNanjing 210096China
The domain adversarial neural network(DANN)methods have been successfully proposed and attracted much attention *** DANNs,a discriminator is trained to discriminate the domain labels of features generated by a generat... 详细信息
来源: 评论
Label Structure Preserving Contrastive Embedding for Multi-Label Learning with Missing Labels
arXiv
收藏 引用
arXiv 2022年
作者: Ma, Zhongchen Li, Lisha Mao, Qirong Chen, Songcan The School of Computer Science and Communications Engineering Jiangsu University Zhenjiang212013 China Jiangsu Engineering Research Center of Big Data Ubiquitous Perception and Intelligent Agriculture Applications China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China Nanjing211106 China
Contrastive learning (CL) has shown impressive advances in image representation learning in whichever supervised multi-class classification or unsupervised learning. However, these CL methods fail to be directly adapt... 详细信息
来源: 评论
Variational OOD State Correction for Offline Reinforcement Learning
arXiv
收藏 引用
arXiv 2025年
作者: Jiang, Ke Jiang, Wen Fujisawa, Masahiro Tan, Xiaoyang College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China The University of Osaka Japan RIKEN AIP Japan
The performance of Offline reinforcement learning is significantly impacted by the issue of state distributional shift, and out-of-distribution (OOD) state correction is a popular approach to address this problem. In ... 详细信息
来源: 评论
Complementary Labels Learning with Augmented Classes
SSRN
收藏 引用
SSRN 2023年
作者: Li, Zhongnian Xu, Mengting Xu, Xinzheng Zhang, Daoqiang School of Computer Science and Technology China University of Ming and Technogy Jiangsu Xuzhou221000 China College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Jiangsu Nanjing210000 China College of Computer Science and Technology Zhejiang University Zhejiang Hangzhou310000 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Jiangsu Nanjing210000 China
Complementary Labels Learning (CLL) arises in many real-world tasks such as private questions classification and online learning, which aims to alleviate the annotation cost compared with standard supervised ***, most... 详细信息
来源: 评论
CE-AH: A contrast-enhanced attention hierarchical network for Alzheimer's disease diagnosis based on structural MRI
收藏 引用
pattern Recognition 2026年 169卷
作者: Tianxiang Wang Qun Dai Han Lu College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing 211106 China
Numerous deep learning-based methods utilizing structural magnetic resonance imaging (sMRI) have been developed for diagnosing Alzheimer's disease (AD). However, the majority of these methods overlook the localize...
来源: 评论
A lightweight multi-scale context network for salient object detection in optical remote sensing images
arXiv
收藏 引用
arXiv 2022年
作者: Lin, Yuhan Sun, Han Liu, Ningzhong Bian, Yetong Cen, Jun Zhou, Huiyu College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China School of Computing and Mathematical Sciences University of Leicester LeicesterLE1 7RH United Kingdom
Due to the more dramatic multi-scale variations and more complicated foregrounds and backgrounds in optical remote sensing images (RSIs), the salient object detection (SOD) for optical RSIs becomes a huge challenge. H... 详细信息
来源: 评论
Nlkd: Using Coarse Annotations For Semantic Segmentation Based on Knowledge Distillation
Nlkd: Using Coarse Annotations For Semantic Segmentation Bas...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Dong Liang Yun Du Han Sun Liyan Zhang Ningzhong Liu Mingqiang Wei College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization
Modern supervised learning relies on a large amount of training data, yet there are many noisy annotations in real datasets. For semantic segmentation tasks, pixel-level annotation noise is typically located at the ed... 详细信息
来源: 评论