咨询与建议

限定检索结果

文献类型

  • 187 篇 期刊文献
  • 148 篇 会议

馆藏范围

  • 335 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 198 篇 工学
    • 159 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 39 篇 控制科学与工程
    • 24 篇 信息与通信工程
    • 24 篇 生物工程
    • 21 篇 光学工程
    • 20 篇 生物医学工程(可授...
    • 10 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 力学(可授工学、理...
    • 6 篇 机械工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 安全科学与工程
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
    • 3 篇 建筑学
  • 113 篇 理学
    • 80 篇 数学
    • 33 篇 统计学(可授理学、...
    • 27 篇 生物学
    • 23 篇 系统科学
    • 16 篇 物理学
    • 8 篇 化学
  • 35 篇 管理学
    • 23 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 11 篇 医学
    • 11 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 32 篇 pattern analysis
  • 30 篇 machine intellig...
  • 20 篇 neural networks
  • 17 篇 laboratories
  • 15 篇 design engineeri...
  • 15 篇 system analysis ...
  • 14 篇 machine learning
  • 11 篇 pattern recognit...
  • 10 篇 training
  • 8 篇 image segmentati...
  • 8 篇 learning
  • 7 篇 convergence
  • 7 篇 contrastive lear...
  • 7 篇 semantics
  • 6 篇 object detection
  • 6 篇 reinforcement le...
  • 6 篇 deep neural netw...
  • 6 篇 systems engineer...
  • 6 篇 voting
  • 6 篇 feature extracti...

机构

  • 89 篇 miit key laborat...
  • 76 篇 college of compu...
  • 28 篇 college of compu...
  • 18 篇 department of el...
  • 18 篇 department of el...
  • 17 篇 miit key laborat...
  • 15 篇 miit key laborat...
  • 11 篇 collaborative in...
  • 10 篇 department of st...
  • 9 篇 college of compu...
  • 9 篇 pattern analysis...
  • 8 篇 pattern analysis...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 school of comput...
  • 5 篇 department of el...
  • 5 篇 state key labora...
  • 5 篇 the college of c...
  • 4 篇 department of st...

作者

  • 53 篇 chen songcan
  • 25 篇 huang sheng-jun
  • 21 篇 ghojogh benyamin
  • 21 篇 li piji
  • 21 篇 karray fakhri
  • 21 篇 crowley mark
  • 19 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 17 篇 sheng-jun huang
  • 17 篇 liang dong
  • 17 篇 songcan chen
  • 15 篇 m. kamel
  • 15 篇 ghodsi ali
  • 13 篇 geng chuanxing
  • 13 篇 tan xiaoyang
  • 11 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 8 篇 m.s. kamel
  • 7 篇 wei mingqiang

语言

  • 259 篇 英文
  • 74 篇 其他
  • 5 篇 中文
检索条件"机构=MIITKey Laboratory of Pattern Analysis and Machine Intelligence"
335 条 记 录,以下是171-180 订阅
排序:
Complementary Labels Learning with Augmented Classes
SSRN
收藏 引用
SSRN 2023年
作者: Li, Zhongnian Xu, Mengting Xu, Xinzheng Zhang, Daoqiang School of Computer Science and Technology China University of Ming and Technogy Jiangsu Xuzhou221000 China College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Jiangsu Nanjing210000 China College of Computer Science and Technology Zhejiang University Zhejiang Hangzhou310000 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Jiangsu Nanjing210000 China
Complementary Labels Learning (CLL) arises in many real-world tasks such as private questions classification and online learning, which aims to alleviate the annotation cost compared with standard supervised ***, most... 详细信息
来源: 评论
CE-AH: A contrast-enhanced attention hierarchical network for Alzheimer's disease diagnosis based on structural MRI
收藏 引用
pattern Recognition 2026年 169卷
作者: Tianxiang Wang Qun Dai Han Lu College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing 211106 China
Numerous deep learning-based methods utilizing structural magnetic resonance imaging (sMRI) have been developed for diagnosing Alzheimer's disease (AD). However, the majority of these methods overlook the localize...
来源: 评论
A lightweight multi-scale context network for salient object detection in optical remote sensing images
arXiv
收藏 引用
arXiv 2022年
作者: Lin, Yuhan Sun, Han Liu, Ningzhong Bian, Yetong Cen, Jun Zhou, Huiyu College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China School of Computing and Mathematical Sciences University of Leicester LeicesterLE1 7RH United Kingdom
Due to the more dramatic multi-scale variations and more complicated foregrounds and backgrounds in optical remote sensing images (RSIs), the salient object detection (SOD) for optical RSIs becomes a huge challenge. H... 详细信息
来源: 评论
Nlkd: Using Coarse Annotations For Semantic Segmentation Based on Knowledge Distillation
Nlkd: Using Coarse Annotations For Semantic Segmentation Bas...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Dong Liang Yun Du Han Sun Liyan Zhang Ningzhong Liu Mingqiang Wei College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization
Modern supervised learning relies on a large amount of training data, yet there are many noisy annotations in real datasets. For semantic segmentation tasks, pixel-level annotation noise is typically located at the ed... 详细信息
来源: 评论
Learning from Positive and Unlabeled Data with Augmented Classes
SSRN
收藏 引用
SSRN 2023年
作者: Li, Zhongnian Yang, Liutao Ma, Zhongchen Sun, Tongfeng Xu, Xinzheng Zhang, Daoqiang School of Computer Science and Technology China University of Ming and Technogy Jiangsu Xuzhou221000 China College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Jiangsu Nanjing210000 China School of Computer Science and communications Engineering Jiangsu University Jiangsu Zhenjiang212013 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Jiangsu Nanjing210000 China
Positive Unlabeled (PU) learning aims to learn a binary classifier from only positive and unlabeled data, which is utilized in many real-world scenarios. However, existing PU learning algorithms cannot deal with the r... 详细信息
来源: 评论
Better safe than sorry: preventing delusive adversaries with adversarial training  21
Better safe than sorry: preventing delusive adversaries with...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing Systems
作者: Lue Tao Lei Feng Jinfeng Yi Sheng-Jun Huang Songcan Chen College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics and MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science Chongqing University JD AI Research
Delusive attacks aim to substantially deteriorate the test accuracy of the learning model by slightly perturbing the features of correctly labeled training examples. By formalizing this malicious attack as finding the...
来源: 评论
A Similarity-based Framework for Classification Task
arXiv
收藏 引用
arXiv 2022年
作者: Ma, Zhongchen Chen, Songcan The School of Computer Science & communications Engineering Jiangsu University The College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Zhenjiang212013 China The College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics The MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing211106 China
—Similarity-based method gives rise to a new class of methods for multi-label learning and also achieves promising performance. In this paper, we generalize this method, resulting in a new framework for classificatio... 详细信息
来源: 评论
Centralized Feature Pyramid for Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Quan, Yu Zhang, Dong Zhang, Liyan Tang, Jinhui The School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China The College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing211106 China
Visual feature pyramid has shown its superiority in both effectiveness and efficiency in a wide range of applications. However, the existing methods exorbitantly concentrate on the inter-layer feature interactions but... 详细信息
来源: 评论
Coarse-to-fine Foreground Segmentation based on Co-occurrence Pixel-Block and Spatio-Temporal Attention Model
Coarse-to-fine Foreground Segmentation based on Co-occurrenc...
收藏 引用
International Conference on pattern Recognition
作者: Dong Liang Xinyu Liu College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing China
Foreground segmentation in dynamic scene is an important task in video surveillance. The unsupervised background subtraction method based on background statistics modeling has difficulties in updating. On the other ha... 详细信息
来源: 评论
ACRM: Attention Cascade R-CNN with Mix-NMS for Metallic Surface Defect Detection
ACRM: Attention Cascade R-CNN with Mix-NMS for Metallic Surf...
收藏 引用
International Conference on pattern Recognition
作者: Junting Fang Xiaoyang Tan Yuhui Wang College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing China
Metallic surface defect detection is of great significance in quality control for production. However, this task is very challenging due to the noise disturbance, large appearance variation, and the ambiguous definiti... 详细信息
来源: 评论