咨询与建议

限定检索结果

文献类型

  • 184 篇 期刊文献
  • 148 篇 会议

馆藏范围

  • 332 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 198 篇 工学
    • 159 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 39 篇 控制科学与工程
    • 24 篇 信息与通信工程
    • 24 篇 生物工程
    • 21 篇 光学工程
    • 20 篇 生物医学工程(可授...
    • 10 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 力学(可授工学、理...
    • 6 篇 机械工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 安全科学与工程
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
    • 3 篇 建筑学
  • 112 篇 理学
    • 79 篇 数学
    • 33 篇 统计学(可授理学、...
    • 27 篇 生物学
    • 23 篇 系统科学
    • 16 篇 物理学
    • 8 篇 化学
  • 35 篇 管理学
    • 23 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 11 篇 医学
    • 11 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 32 篇 pattern analysis
  • 30 篇 machine intellig...
  • 20 篇 neural networks
  • 17 篇 laboratories
  • 15 篇 design engineeri...
  • 15 篇 system analysis ...
  • 14 篇 machine learning
  • 11 篇 pattern recognit...
  • 10 篇 training
  • 8 篇 image segmentati...
  • 8 篇 learning
  • 7 篇 convergence
  • 7 篇 contrastive lear...
  • 7 篇 semantics
  • 6 篇 object detection
  • 6 篇 reinforcement le...
  • 6 篇 deep neural netw...
  • 6 篇 systems engineer...
  • 6 篇 voting
  • 6 篇 feature extracti...

机构

  • 87 篇 miit key laborat...
  • 74 篇 college of compu...
  • 28 篇 college of compu...
  • 18 篇 department of el...
  • 18 篇 department of el...
  • 16 篇 miit key laborat...
  • 15 篇 miit key laborat...
  • 11 篇 collaborative in...
  • 10 篇 department of st...
  • 9 篇 college of compu...
  • 9 篇 pattern analysis...
  • 8 篇 pattern analysis...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 school of comput...
  • 5 篇 department of el...
  • 5 篇 the college of c...
  • 5 篇 pattern analysis...
  • 4 篇 department of st...

作者

  • 52 篇 chen songcan
  • 25 篇 huang sheng-jun
  • 21 篇 ghojogh benyamin
  • 21 篇 li piji
  • 21 篇 karray fakhri
  • 21 篇 crowley mark
  • 19 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 17 篇 sheng-jun huang
  • 17 篇 songcan chen
  • 16 篇 liang dong
  • 15 篇 m. kamel
  • 15 篇 ghodsi ali
  • 13 篇 tan xiaoyang
  • 12 篇 geng chuanxing
  • 10 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 8 篇 m.s. kamel
  • 7 篇 wei mingqiang

语言

  • 280 篇 英文
  • 50 篇 其他
  • 5 篇 中文
检索条件"机构=MIITKey Laboratory of Pattern Analysis and Machine Intelligence"
332 条 记 录,以下是181-190 订阅
排序:
Open-set label noise can improve robustness against inherent label noise  21
Open-set label noise can improve robustness against inherent...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing Systems
作者: Hongxin Wei Lue Tao Renchunzi Xie Bo An School of Computer Science and Engineering Nanyang Technological University Singapore College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China and MIIT key Laboratory of Pattern Analysis and Machine Intelligence China
Learning with noisy labels is a practically challenging problem in weakly supervised learning. In the existing literature, open-set noises are always considered to be poisonous for generalization, similar to closed-se...
来源: 评论
Recent Advances in Out-of-Distribution Detection with CLIP-Like Models: A Survey
arXiv
收藏 引用
arXiv 2025年
作者: Li, Chaohua Zhang, Enhao Geng, Chuanxing Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China Department of Computer Science Hong Kong Baptist University Hong Kong
Out-of-distribution detection (OOD) is a pivotal task for real-world applications that trains models to identify samples distributionally different from the in-distribution (ID) data during testing. Recent advances in... 详细信息
来源: 评论
Dense Face Detection via High-level Context Mining
Dense Face Detection via High-level Context Mining
收藏 引用
International Conference on Automatic Face and Gesture Recognition
作者: Qixiang Geng Dong Liang Huiyu Zhou Liyan Zhang Han Sun Ningzhong Liu MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics School of Informatics University of Leicester
The appearance degradation caused by low resolution is the core problem of small face detection. Therefore, a natural approach is to assemble information from the context. This paper focuses on how to use high-level c... 详细信息
来源: 评论
Generative locally linear embedding
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark The Machine Learning Laboratory Department of Electrical and Computer Engineering University of Waterloo WaterlooON Canada The Department of Statistics and Actuarial Science University of Waterloo WaterlooON Canada The Centre for Pattern Analysis and Machine Intelligence Department of Electrical and Computer Engineering University of Waterloo WaterlooON Canada
Locally Linear Embedding (LLE) is a nonlinear spectral dimensionality reduction and manifold learning method. It has two main steps which are linear reconstruction and linear embedding of points in the input space and... 详细信息
来源: 评论
Better safe than sorry: Preventing delusive adversaries with adversarial training
arXiv
收藏 引用
arXiv 2021年
作者: Tao, Lue Feng, Lei Yi, Jinfeng Huang, Sheng-Jun Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China College of Computer Science Chongqing University China JD AI Research China
Delusive attacks aim to substantially deteriorate the test accuracy of the learning model by slightly perturbing the features of correctly labeled training examples. By formalizing this malicious attack as finding the... 详细信息
来源: 评论
AdaGDA: Faster Adaptive Gradient Descent Ascent Methods for Minimax Optimization
arXiv
收藏 引用
arXiv 2021年
作者: Huang, Feihu Wu, Xidong Hu, Zhengmian College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China Miit Key Laboratory of Pattern Analysis and Machine Intelligence China Department of Electrical and Computer Engineering University of Pittsburgh Pittsburgh United States
In the paper, we propose a class of faster adaptive Gradient Descent Ascent (GDA) methods for solving the nonconvex-strongly-concave minimax problems by using the unified adaptive matrices, which include almost all ex... 详细信息
来源: 评论
Learning twofold heterogeneous multi-task by sharing similar convolution kernel pairs
arXiv
收藏 引用
arXiv 2021年
作者: Feng, Quan Chen, Songcan College of Computer Science & Technology Nanjing University of Aeronautics & Astronautics NanjingJiangsu211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics & Astronautics NanjingJiangsu211106 China
Heterogeneous multi-task learning (HMTL) is an important topic in multi-task learning (MTL). Most existing HMTL methods usually solve either scenario where all tasks reside in the same input (feature) space yet unnece... 详细信息
来源: 评论
BiAdam: Fast Adaptive Bilevel Optimization Methods
arXiv
收藏 引用
arXiv 2021年
作者: Huang, Feihu Li, Junyi Gao, Shangqian College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China Miit Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China Department of Electrical and Computer Engineering University of Pittsburgh Pittsburgh United States
Bilevel optimization recently has attracted increased interest in machine learning due to its many applications such as hyper-parameter optimization and meta learning. Although many bilevel methods recently have been ... 详细信息
来源: 评论
Quantile-quantile embedding for distribution transformation and manifold embedding with ability to choose the embedding distribution
arXiv
收藏 引用
arXiv 2020年
作者: Ghojogh, Benyamin Karray, Fakhri Crowley, Mark Machine Learning Laboratory Department of ECE University of Waterloo Canada Centre for Pattern Analysis and Machine Intelligence Department of ECE University of Waterloo Canada
We propose a new embedding method, named Quantile-Quantile Embedding (QQE), for distribution transformation and manifold embedding with the ability to choose the embedding distribution. QQE, which uses the concept of ... 详细信息
来源: 评论
Learning from crowds with sparse and imbalanced annotations
arXiv
收藏 引用
arXiv 2021年
作者: Shi, Ye Li, Shao-Yuan Huang, Sheng-Jun Ministry of Industry and Information Technology Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing211106 China State Key Laboratory for Novel Software Technology Nanjing University Nanjing210023 China
Traditional supervised learning requires ground truth labels for the training data, whose collection can be difficult in many cases. Recently, crowdsourcing has established itself as an efficient labeling solution thr... 详细信息
来源: 评论