咨询与建议

限定检索结果

文献类型

  • 187 篇 期刊文献
  • 148 篇 会议

馆藏范围

  • 335 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 198 篇 工学
    • 159 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 39 篇 控制科学与工程
    • 24 篇 信息与通信工程
    • 24 篇 生物工程
    • 21 篇 光学工程
    • 20 篇 生物医学工程(可授...
    • 10 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 力学(可授工学、理...
    • 6 篇 机械工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 安全科学与工程
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
    • 3 篇 建筑学
  • 113 篇 理学
    • 80 篇 数学
    • 33 篇 统计学(可授理学、...
    • 27 篇 生物学
    • 23 篇 系统科学
    • 16 篇 物理学
    • 8 篇 化学
  • 35 篇 管理学
    • 23 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 11 篇 医学
    • 11 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 32 篇 pattern analysis
  • 30 篇 machine intellig...
  • 20 篇 neural networks
  • 17 篇 laboratories
  • 15 篇 design engineeri...
  • 15 篇 system analysis ...
  • 14 篇 machine learning
  • 11 篇 pattern recognit...
  • 10 篇 training
  • 8 篇 image segmentati...
  • 8 篇 learning
  • 7 篇 convergence
  • 7 篇 contrastive lear...
  • 7 篇 semantics
  • 6 篇 object detection
  • 6 篇 reinforcement le...
  • 6 篇 deep neural netw...
  • 6 篇 systems engineer...
  • 6 篇 voting
  • 6 篇 feature extracti...

机构

  • 89 篇 miit key laborat...
  • 76 篇 college of compu...
  • 28 篇 college of compu...
  • 18 篇 department of el...
  • 18 篇 department of el...
  • 17 篇 miit key laborat...
  • 15 篇 miit key laborat...
  • 11 篇 collaborative in...
  • 10 篇 department of st...
  • 9 篇 college of compu...
  • 9 篇 pattern analysis...
  • 8 篇 pattern analysis...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 school of comput...
  • 5 篇 department of el...
  • 5 篇 state key labora...
  • 5 篇 the college of c...
  • 4 篇 department of st...

作者

  • 53 篇 chen songcan
  • 25 篇 huang sheng-jun
  • 21 篇 ghojogh benyamin
  • 21 篇 li piji
  • 21 篇 karray fakhri
  • 21 篇 crowley mark
  • 19 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 17 篇 sheng-jun huang
  • 17 篇 liang dong
  • 17 篇 songcan chen
  • 15 篇 m. kamel
  • 15 篇 ghodsi ali
  • 13 篇 geng chuanxing
  • 13 篇 tan xiaoyang
  • 11 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 8 篇 m.s. kamel
  • 7 篇 wei mingqiang

语言

  • 259 篇 英文
  • 74 篇 其他
  • 5 篇 中文
检索条件"机构=MIITKey Laboratory of Pattern Analysis and Machine Intelligence"
335 条 记 录,以下是191-200 订阅
排序:
BiAdam: Fast Adaptive Bilevel Optimization Methods
arXiv
收藏 引用
arXiv 2021年
作者: Huang, Feihu Li, Junyi Gao, Shangqian College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China Miit Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China Department of Electrical and Computer Engineering University of Pittsburgh Pittsburgh United States
Bilevel optimization recently has attracted increased interest in machine learning due to its many applications such as hyper-parameter optimization and meta learning. Although many bilevel methods recently have been ... 详细信息
来源: 评论
Quantile-quantile embedding for distribution transformation and manifold embedding with ability to choose the embedding distribution
arXiv
收藏 引用
arXiv 2020年
作者: Ghojogh, Benyamin Karray, Fakhri Crowley, Mark Machine Learning Laboratory Department of ECE University of Waterloo Canada Centre for Pattern Analysis and Machine Intelligence Department of ECE University of Waterloo Canada
We propose a new embedding method, named Quantile-Quantile Embedding (QQE), for distribution transformation and manifold embedding with the ability to choose the embedding distribution. QQE, which uses the concept of ... 详细信息
来源: 评论
Learning from crowds with sparse and imbalanced annotations
arXiv
收藏 引用
arXiv 2021年
作者: Shi, Ye Li, Shao-Yuan Huang, Sheng-Jun Ministry of Industry and Information Technology Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing211106 China State Key Laboratory for Novel Software Technology Nanjing University Nanjing210023 China
Traditional supervised learning requires ground truth labels for the training data, whose collection can be difficult in many cases. Recently, crowdsourcing has established itself as an efficient labeling solution thr... 详细信息
来源: 评论
A Dual-Level Cancelable Framework for Palmprint Verification and Hack-Proof Data Storage
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Ziyuan Kang, Ming Teoh, Andrew Beng Jin Gao, Chengrui Chen, Wen Zhang, Bob Zhang, Yi The College of Computer Science Key Laboratory of Data Protection and Intelligent Management Ministry of Education Sichuan University Chengdu610065 China The School of Cyber Science and Engineering Sichuan University Chengdu610065 China The School of Electrical and Electronic Engineering College of Engineering Yonsei University Seoul Korea Republic of The College of Computer Science Sichuan University Chengdu610065 China The Pattern Analysis and Machine Intelligence Group Department of Computer and Information Science University of Macau Taipa China The School of Cyber Science and Engineering Key Laboratory of Data Protection and Intelligent Management Ministry of Education Sichuan University Chengdu610065 China
In recent years, palmprints have been widely used for individual verification. The rich privacy information in palmprint data necessitates its protection to ensure security and privacy without sacrificing system perfo... 详细信息
来源: 评论
Robust Bayesian optimization with reinforcement learned acquisition functions
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Zijing Qu, Xiyao Liu, Xuejun Lyu, Hongqiang Ministry of Industry and Information Technology Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing211106 China College of Aerospace Engineering Nanjing University of Aeronautics and Astronautics Nanjing210016 China Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing210023 China Key Laboratory of Aerodynamic Noise Control State Key Laboratory of Aerodynamics Mianyang621000 China
In Bayesian optimization (BO) for expensive black-box optimization tasks, acquisition function (AF) guides sequential sampling and plays a pivotal role for efficient convergence to better optima. Prevailing AFs usuall... 详细信息
来源: 评论
Complementary Labels Learning with Augmented Classes
arXiv
收藏 引用
arXiv 2022年
作者: Li, Zhongnian Zhang, Jian Xu, Mengting Xu, Xinzheng Zhang, Daoqiang School of Computer Science and Technology China University of Ming and Technogy Jiangsu Xuzhou221000 China College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Jiangsu Nanjing210000 China college of computer science and technology Zhejiang University Zhejiang Hangzhou310000 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Jiangsu Nanjing210000 China
Complementary Labels Learning (CLL) arises in many real-world tasks such as private questions classification and online learning, which aims to alleviate the annotation cost compared with standard supervised learning.... 详细信息
来源: 评论
Semantically contrastive learning for low-light image enhancement
arXiv
收藏 引用
arXiv 2021年
作者: Liang, Dong Li, Ling Wei, Mingqiang Yang, Shuo Zhang, Liyan Yang, Wenhan Du, Yun Zhou, Huiyu Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization China vivo Mobile Communication Nanyang Technological University Singapore University of Leicester United Kingdom
Low-light image enhancement (LLE) remains challenging due to the unfavorable prevailing low-contrast and weak-visibility problems of single RGB images. In this paper, we respond to the intriguing learning-related ques... 详细信息
来源: 评论
Rate-Distortion Modeling for Bit Rate Constrained Point Cloud Compression
arXiv
收藏 引用
arXiv 2022年
作者: Gao, Pan Luo, Shengzhou Paul, Manoranjan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing211106 China School of Software South China Normal University Foshan528225 China School of Computing and Mathematics Charles Sturt University BathurstNSW2795 Australia
As being one of the main representation formats of 3D real world and well-suited for virtual reality and augmented reality applications, point clouds have gained a lot of popularity. In order to reduce the huge amount... 详细信息
来源: 评论
AADL and Modelica model combination and model conversion based on CPS  4
AADL and Modelica model combination and model conversion bas...
收藏 引用
4th International Conference on Electronic Information Technology and Computer Engineering, EITCE 2020
作者: Zhu, Yifeng Cao, Zining Wang, Fujun Lu, Weiwei College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China College of Computer Science and Technology Collaborative Innovation Center of Novel Software Technology and Industrialization Miit Key Laboratory of Pattern Analysis and Machine Intelligence Luoyang China Science and Technology on Electro-optic Control Laboratory Luoyang China
Cyber-Physical System (CPS), which realizes the close integration of physical resources and information resources, is a distributed and asynchronous dynamic hybrid system running in different time and space. In this p... 详细信息
来源: 评论
Learning from Positive and Unlabeled Data with Augmented Classes
SSRN
收藏 引用
SSRN 2022年
作者: Li, Zhongnian Yang, Liutao Ma, Zhongchen Sun, Tongfeng Xu, Xinzheng Zhang, Daoqiang School of Computer Science and Technology China University of Ming and Technogy Jiangsu Xuzhou221000 China College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Jiangsu Nanjing210000 China School of Computer Science and communications Engineering Jiangsu University Jiangsu Zhenjiang212013 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Jiangsu Nanjing210000 China
Positive Unlabeled (PU) learning aims to learn a binary classifier from only positive and unlabeled data, which is utilized in many real-world scenarios. However, existing PU learning algorithms cannot deal with the r... 详细信息
来源: 评论