咨询与建议

限定检索结果

文献类型

  • 184 篇 期刊文献
  • 148 篇 会议

馆藏范围

  • 332 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 198 篇 工学
    • 159 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 39 篇 控制科学与工程
    • 24 篇 信息与通信工程
    • 24 篇 生物工程
    • 21 篇 光学工程
    • 20 篇 生物医学工程(可授...
    • 10 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 力学(可授工学、理...
    • 6 篇 机械工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 安全科学与工程
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
    • 3 篇 建筑学
  • 112 篇 理学
    • 79 篇 数学
    • 33 篇 统计学(可授理学、...
    • 27 篇 生物学
    • 23 篇 系统科学
    • 16 篇 物理学
    • 8 篇 化学
  • 35 篇 管理学
    • 23 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 11 篇 医学
    • 11 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 32 篇 pattern analysis
  • 30 篇 machine intellig...
  • 20 篇 neural networks
  • 17 篇 laboratories
  • 15 篇 design engineeri...
  • 15 篇 system analysis ...
  • 14 篇 machine learning
  • 11 篇 pattern recognit...
  • 10 篇 training
  • 8 篇 image segmentati...
  • 8 篇 learning
  • 7 篇 convergence
  • 7 篇 contrastive lear...
  • 7 篇 semantics
  • 6 篇 object detection
  • 6 篇 reinforcement le...
  • 6 篇 deep neural netw...
  • 6 篇 systems engineer...
  • 6 篇 voting
  • 6 篇 feature extracti...

机构

  • 87 篇 miit key laborat...
  • 74 篇 college of compu...
  • 28 篇 college of compu...
  • 18 篇 department of el...
  • 18 篇 department of el...
  • 16 篇 miit key laborat...
  • 15 篇 miit key laborat...
  • 11 篇 collaborative in...
  • 10 篇 department of st...
  • 9 篇 college of compu...
  • 9 篇 pattern analysis...
  • 8 篇 pattern analysis...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 school of comput...
  • 5 篇 department of el...
  • 5 篇 the college of c...
  • 5 篇 pattern analysis...
  • 4 篇 department of st...

作者

  • 52 篇 chen songcan
  • 25 篇 huang sheng-jun
  • 21 篇 ghojogh benyamin
  • 21 篇 li piji
  • 21 篇 karray fakhri
  • 21 篇 crowley mark
  • 19 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 17 篇 sheng-jun huang
  • 17 篇 songcan chen
  • 16 篇 liang dong
  • 15 篇 m. kamel
  • 15 篇 ghodsi ali
  • 13 篇 tan xiaoyang
  • 12 篇 geng chuanxing
  • 10 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 8 篇 m.s. kamel
  • 7 篇 wei mingqiang

语言

  • 280 篇 英文
  • 50 篇 其他
  • 5 篇 中文
检索条件"机构=MIITKey Laboratory of Pattern Analysis and Machine Intelligence"
332 条 记 录,以下是31-40 订阅
排序:
Synthesizing Aβ-PET based on multi-modal neuroimaging fusion for pathological diagnosis of Alzheimer's disease
Synthesizing Aβ-PET based on multi-modal neuroimaging fusio...
收藏 引用
2024 International Conference on Cyber-Physical Social intelligence, ICCSI 2024
作者: Yang, Yueteng Li, Bing Li, Weikai Chen, Haifeng Cao, Wenming Chongqing Jiaotong University Department of Mathematics China Miit Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China Nanjing University Nanjing Drum Tower Hospital Affiliated Hospital of Medical School Department of Neurology Nanjing China
Synthesizing Aβ-PET images from cross-modal neuroimaging for diagnosing Alzheimer's disease through multi-modal medical image fusion is highly significant. However, there are relatively few studies in this area. ... 详细信息
来源: 评论
Minimum Error Entropy High-Order Extended Kalman Filter
Minimum Error Entropy High-Order Extended Kalman Filter
收藏 引用
2023 International Conference on Cyber-Physical Social intelligence, ICCSI 2023
作者: Cheng, Zhi Chen, Xiaofeng Li, Hua Li, Weikai Lin, Dongyuan Chongqing Jiaotong University Department of Mathematics Chongqing China Miit Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China Southwest University College of Electronic and Information Engineering Chongqing China
The conventional extended Kalman filter(EKF) is proposed under the criterion of minimum mean square error(MMSE) and omits high-order information. This leads to poor estimation of the EKF in non-Gaussian and strongly n... 详细信息
来源: 评论
All-around Neural Collapse for Imbalanced Classification
收藏 引用
IEEE Transactions on Knowledge and Data Engineering 2025年
作者: Zhang, Enhao Li, Chaohua Geng, Chuanxing Chen, Songcan MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China College of Computer Science and Technology Nanjing211106 China
Neural Collapse (NC) presents an elegant geometric structure that enables individual activations (features), class means and classifier (weights) vectors to reach optimal inter-class separability during the terminal p... 详细信息
来源: 评论
uChecker: Masked Pretrained Language Models as Unsupervised Chinese Spelling Checkers  29
uChecker: Masked Pretrained Language Models as Unsupervised ...
收藏 引用
29th International Conference on Computational Linguistics, COLING 2022
作者: Li, Piji College of Computer Science and Technology Nanjing University of Aeronautics Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Jiangsu Nanjing China
The task of Chinese Spelling Check (CSC) is aiming to detect and correct spelling errors that can be found in the text. While manually annotating a high-quality dataset is expensive and time-consuming, thus the scale ... 详细信息
来源: 评论
A Multi-Scale Multi-Hop Graph Convolution Network for Predicting Fluid intelligence via Functional Connectivity
A Multi-Scale Multi-Hop Graph Convolution Network for Predic...
收藏 引用
2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
作者: Wen, Xuyun Cao, Qumei Zhang, Daoqiang Nanjing University of Aeronautics and Astronautics Nanjing College of Computer Science and Technology MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Jiangsu China
Predicting fluid intelligence via neuroimaging data is important to understand neural mechanisms underlying diverse complex cognitive tasks in human brain. Functional connectivity (FC) reflects interactions among brai... 详细信息
来源: 评论
fMRI-based Decoding of Visual Information from Human Brain Activity: A Brief Review
收藏 引用
International Journal of Automation and computing 2021年 第2期18卷 170-184页
作者: Shuo Huang Wei Shao Mei-Ling Wang Dao-Qiang Zhang College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsNanjing 211106China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing 211106China
One of the most significant challenges in the neuroscience community is to understand how the human brain *** progress in neuroimaging techniques have validated that it is possible to decode a person′s thoughts,memor... 详细信息
来源: 评论
TimeCHEAT: A Channel Harmony Strategy for Irregularly Sampled Multivariate Time Series analysis  39
TimeCHEAT: A Channel Harmony Strategy for Irregularly Sample...
收藏 引用
39th Annual AAAI Conference on Artificial intelligence, AAAI 2025
作者: Liu, Jiexi Cao, Meng Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China
Irregularly sampled multivariate time series (ISMTS) are prevalent in reality. Due to their non-uniform intervals between successive observations and varying sampling rates among series, the channel-independent (CI) s...
来源: 评论
Expand Horizon: Graph Out-of-Distribution Generalization via Multi-Level Environment Inference  39
Expand Horizon: Graph Out-of-Distribution Generalization via...
收藏 引用
39th Annual AAAI Conference on Artificial intelligence, AAAI 2025
作者: Zhang, Jiaqiang Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China
Graph neural networks (GNNs) are widely used for node classification tasks, but when encountering distribution shifts due to environmental change in real-world scenarios, they tend to learn unstable correlations betwe... 详细信息
来源: 评论
A Survey on Incomplete Multi-label Learning: Recent Advances and Future Trends
arXiv
收藏 引用
arXiv 2024年
作者: Li, Xiang Liu, Jiexi Wang, Xinrui Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China
In reality, data often exhibit associations with multiple labels, making multi-label learning (MLL) become a prominent Copyright © 2024, The Authors. All rights reserved.
来源: 评论
Dirichlet-Based Prediction Calibration for Learning with Noisy Labels
arXiv
收藏 引用
arXiv 2024年
作者: Zong, Chen-Chen Wang, Ye-Wen Xie, Ming-Kun Huang, Sheng-Jun College of Computer Science and Technology/Artificial Intelligence Nanjing University of Aeronautics Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Learning with noisy labels can significantly hinder the generalization performance of deep neural networks (DNNs). Existing approaches address this issue through loss correction or example selection methods. However, ... 详细信息
来源: 评论