咨询与建议

限定检索结果

文献类型

  • 184 篇 期刊文献
  • 148 篇 会议

馆藏范围

  • 332 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 198 篇 工学
    • 159 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 39 篇 控制科学与工程
    • 24 篇 信息与通信工程
    • 24 篇 生物工程
    • 21 篇 光学工程
    • 20 篇 生物医学工程(可授...
    • 10 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 力学(可授工学、理...
    • 6 篇 机械工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 安全科学与工程
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
    • 3 篇 建筑学
  • 112 篇 理学
    • 79 篇 数学
    • 33 篇 统计学(可授理学、...
    • 27 篇 生物学
    • 23 篇 系统科学
    • 16 篇 物理学
    • 8 篇 化学
  • 35 篇 管理学
    • 23 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 11 篇 医学
    • 11 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 32 篇 pattern analysis
  • 30 篇 machine intellig...
  • 20 篇 neural networks
  • 17 篇 laboratories
  • 15 篇 design engineeri...
  • 15 篇 system analysis ...
  • 14 篇 machine learning
  • 11 篇 pattern recognit...
  • 10 篇 training
  • 8 篇 image segmentati...
  • 8 篇 learning
  • 7 篇 convergence
  • 7 篇 contrastive lear...
  • 7 篇 semantics
  • 6 篇 object detection
  • 6 篇 reinforcement le...
  • 6 篇 deep neural netw...
  • 6 篇 systems engineer...
  • 6 篇 voting
  • 6 篇 feature extracti...

机构

  • 87 篇 miit key laborat...
  • 74 篇 college of compu...
  • 28 篇 college of compu...
  • 18 篇 department of el...
  • 18 篇 department of el...
  • 16 篇 miit key laborat...
  • 15 篇 miit key laborat...
  • 11 篇 collaborative in...
  • 10 篇 department of st...
  • 9 篇 college of compu...
  • 9 篇 pattern analysis...
  • 8 篇 pattern analysis...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 school of comput...
  • 5 篇 department of el...
  • 5 篇 the college of c...
  • 5 篇 pattern analysis...
  • 4 篇 department of st...

作者

  • 52 篇 chen songcan
  • 25 篇 huang sheng-jun
  • 21 篇 ghojogh benyamin
  • 21 篇 li piji
  • 21 篇 karray fakhri
  • 21 篇 crowley mark
  • 19 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 17 篇 sheng-jun huang
  • 17 篇 songcan chen
  • 16 篇 liang dong
  • 15 篇 m. kamel
  • 15 篇 ghodsi ali
  • 13 篇 tan xiaoyang
  • 12 篇 geng chuanxing
  • 10 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 8 篇 m.s. kamel
  • 7 篇 wei mingqiang

语言

  • 280 篇 英文
  • 50 篇 其他
  • 5 篇 中文
检索条件"机构=MIITKey Laboratory of Pattern Analysis and Machine Intelligence"
332 条 记 录,以下是41-50 订阅
排序:
A Systematic Evaluation of Large Language Models for Natural Language Generation Tasks
arXiv
收藏 引用
arXiv 2024年
作者: Ni, Xuanfan Li, Piji College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China
Recent efforts have evaluated large language models (LLMs) in areas such as commonsense reasoning, mathematical reasoning, and code generation. However, to the best of our knowledge, no work has specifically investiga... 详细信息
来源: 评论
An Improved Algorithm for Spiking Neural Networks with Multi-Scale Attention Coding
An Improved Algorithm for Spiking Neural Networks with Multi...
收藏 引用
Cyber-Physical Social intelligence (ICCSI), International Conference on
作者: Sisi Chen Xiaofeng Chen Weikai Li Department of Mathematics Chongqing Jiaotong University Chongqing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Spiking Neural Networks (SNNs), driven by spike-based mechanisms, are known for their high efficiency and low energy consumption, which makes them ideal for applications like image classification, object detection, an... 详细信息
来源: 评论
A comprehensive perspective of contrastive self-supervised learning
收藏 引用
Frontiers of Computer Science 2021年 第4期15卷 1-3页
作者: Songcan CHEN Chuanxing GENG College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsNanjing 211106China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing 211106China
Self-supervised learning(SSL),as a new unsupervised representation learning paradigm in machine learning,recently has received extensive attention,which is also regarded as the future of machine learning by the Turing... 详细信息
来源: 评论
TimeCHEAT: A Channel Harmony Strategy for Irregularly Sampled Multivariate Time Series analysis
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Jiexi Cao, Meng Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China
Irregularly sampled multivariate time series (ISMTS) are prevalent in reality. Due to their non-uniform intervals between successive observations and varying sampling rates among series, the channel-independent (CI) s... 详细信息
来源: 评论
A Double Regularization Loss Based on Long-tailed Noisy Labels
A Double Regularization Loss Based on Long-tailed Noisy Labe...
收藏 引用
IEEE International Conference on Civil Aviation Safety and Information Technology (ICCASIT)
作者: Lei Wang Shaoyuan Li MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing China
Extensive research has been conducted in recent years to solve the long-tailed distribution and achieved excellent results. However, in contrast to well-designed data, datasets with label noise are common in the real ...
来源: 评论
All Beings Are Equal in Open Set Recognition
arXiv
收藏 引用
arXiv 2024年
作者: Li, Chaohua Zhang, Enhao Geng, Chuanxing Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China
In open-set recognition (OSR), a promising strategy is exploiting pseudo-unknown data outside given K known classes as an additional K+1-th class to explicitly model potential open space. However, treating unknown cla... 详细信息
来源: 评论
Class-aware Learning for Imbalanced Multi-Label Classification
Class-aware Learning for Imbalanced Multi-Label Classificati...
收藏 引用
IEEE International Conference on Civil Aviation Safety and Information Technology (ICCASIT)
作者: Jiayao Chen Shaoyuan Li MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing China
Imbalanced multi-label image classification has gained increasing attention recently, in which each sample has multiple class labels, but the number of each category is unevenly distributed. It’s common in practical ...
来源: 评论
Tumor Micro-Environment Interactions Guided Graph Learning for Survival analysis of Human Cancers from Whole-Slide Pathological Images
Tumor Micro-Environment Interactions Guided Graph Learning f...
收藏 引用
Conference on Computer Vision and pattern Recognition (CVPR)
作者: Wei Shao YangYang Shi Daoqiang Zhang JunJie Zhou Peng Wan Ministry of Education College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Key Laboratory of Brain-Machine Intelligence Technology Nanjing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
The recent advance of deep learning technology brings the possibility of assisting the pathologist to predict the patients' survival from whole-slide pathological images (WSIs). However, most of the prevalent meth... 详细信息
来源: 评论
MuSiCNet: A Gradual Coarse-to-Fine Framework for Irregularly Sampled Multivariate Time Series analysis
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Jiexi Cao, Meng Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautic China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China
Irregularly sampled multivariate time series (ISMTS) are prevalent in reality. Most existing methods treat ISMTS as synchronized regularly sampled time series with missing values, neglecting that the irregularities ar... 详细信息
来源: 评论
Faster Double Adaptive Gradient Methods  39
Faster Double Adaptive Gradient Methods
收藏 引用
39th Annual AAAI Conference on Artificial intelligence, AAAI 2025
作者: Huang, Feihu Luo, Yuning College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
In this paper, we propose a class of faster double adaptive gradient methods to solve nonconvex finite-sum optimization problems possibly with nonsmooth regularization by simultaneously using adaptive learning rate an... 详细信息
来源: 评论