咨询与建议

限定检索结果

文献类型

  • 184 篇 期刊文献
  • 148 篇 会议

馆藏范围

  • 332 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 198 篇 工学
    • 159 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 39 篇 控制科学与工程
    • 24 篇 信息与通信工程
    • 24 篇 生物工程
    • 21 篇 光学工程
    • 20 篇 生物医学工程(可授...
    • 10 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 力学(可授工学、理...
    • 6 篇 机械工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 安全科学与工程
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
    • 3 篇 建筑学
  • 112 篇 理学
    • 79 篇 数学
    • 33 篇 统计学(可授理学、...
    • 27 篇 生物学
    • 23 篇 系统科学
    • 16 篇 物理学
    • 8 篇 化学
  • 35 篇 管理学
    • 23 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 11 篇 医学
    • 11 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 32 篇 pattern analysis
  • 30 篇 machine intellig...
  • 20 篇 neural networks
  • 17 篇 laboratories
  • 15 篇 design engineeri...
  • 15 篇 system analysis ...
  • 14 篇 machine learning
  • 11 篇 pattern recognit...
  • 10 篇 training
  • 8 篇 image segmentati...
  • 8 篇 learning
  • 7 篇 convergence
  • 7 篇 contrastive lear...
  • 7 篇 semantics
  • 6 篇 object detection
  • 6 篇 reinforcement le...
  • 6 篇 deep neural netw...
  • 6 篇 systems engineer...
  • 6 篇 voting
  • 6 篇 feature extracti...

机构

  • 87 篇 miit key laborat...
  • 74 篇 college of compu...
  • 28 篇 college of compu...
  • 18 篇 department of el...
  • 18 篇 department of el...
  • 16 篇 miit key laborat...
  • 15 篇 miit key laborat...
  • 11 篇 collaborative in...
  • 10 篇 department of st...
  • 9 篇 college of compu...
  • 9 篇 pattern analysis...
  • 8 篇 pattern analysis...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 school of comput...
  • 5 篇 department of el...
  • 5 篇 the college of c...
  • 5 篇 pattern analysis...
  • 4 篇 department of st...

作者

  • 52 篇 chen songcan
  • 25 篇 huang sheng-jun
  • 21 篇 ghojogh benyamin
  • 21 篇 li piji
  • 21 篇 karray fakhri
  • 21 篇 crowley mark
  • 19 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 17 篇 sheng-jun huang
  • 17 篇 songcan chen
  • 16 篇 liang dong
  • 15 篇 m. kamel
  • 15 篇 ghodsi ali
  • 13 篇 tan xiaoyang
  • 12 篇 geng chuanxing
  • 10 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 8 篇 m.s. kamel
  • 7 篇 wei mingqiang

语言

  • 280 篇 英文
  • 50 篇 其他
  • 5 篇 中文
检索条件"机构=MIITKey Laboratory of Pattern Analysis and Machine Intelligence"
332 条 记 录,以下是61-70 订阅
排序:
Dynamic Against Dynamic: An Open-set Self-learning Framework
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Haifeng Geng, Chuanxing Yuen, Pong C. Chen, Songcan Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China Hong Kong Baptist University Hong Kong
In open-set recognition, existing methods generally learn statically fixed decision boundaries using known classes to reject unknown classes. Though they have achieved promising results, such decision boundaries are e... 详细信息
来源: 评论
Faster Adaptive Decentralized Learning Algorithms
arXiv
收藏 引用
arXiv 2024年
作者: Huang, Feihu Zhao, Jianyu College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Decentralized learning recently has received increasing attention in machine learning due to its advantages in implementation simplicity and system robustness, data privacy. Meanwhile, the adaptive gradient methods sh... 详细信息
来源: 评论
Beyond myopia: learning from positive and unlabeled data through holistic predictive trends  23
Beyond myopia: learning from positive and unlabeled data thr...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Xinrui Wang Wenhai Wan Chuanxing Geng Shaoyuan Li Songcan Chen College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence
Learning binary classifiers from positive and unlabeled data (PUL) is vital in many real-world applications, especially when verifying negative examples is difficult. Despite the impressive empirical performance of re...
来源: 评论
A generative deep learning framework for airfoil flow field prediction with sparse data
收藏 引用
Chinese Journal of Aeronautics 2022年 第1期35卷 470-484页
作者: Haizhou WU Xuejun LIU Wei AN Hongqiang LYU MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing 211106China Key Laboratory of Aerodynamic Noise Control Mianyang 621000China State Key Laboratory of Aerodynamics Mianyang 621000China Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing 210023China College of Aerospace Engineering Nanjing University of Aeronautics and AstronauticsNanjing 211106China
Deep learning has been probed for the airfoil performance prediction in recent *** with the expensive CFD simulations and wind tunnel experiments,deep learning models can be leveraged to somewhat mitigate such expense... 详细信息
来源: 评论
Class-Aware Universum Inspired Re-Balance Learning for Long-Tailed Recognition
SSRN
收藏 引用
SSRN 2024年
作者: Zhang, Enhao Geng, Chuanxing Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Jiangsu Nanjing211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China
Data augmentation for minority classes is an effective strategy for long-tailed recognition, thus developing a large number of methods. Although these methods all ensure the balance in sample quantity, the quality of ... 详细信息
来源: 评论
Beyond Myopia: Learning from Positive and Unlabeled Data through Holistic Predictive Trends
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Xinrui Wan, Wenhai Geng, Chuanxin Li, Shaoyuan Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China
Learning binary classifiers from positive and unlabeled data (PUL) is vital in many real-world applications, especially when verifying negative examples is difficult. Despite the impressive empirical performance of re... 详细信息
来源: 评论
Implicit Stochastic Gradient Descent for Training Physics-informed Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Li, Ye Chen, Song-Can Huang, Sheng-Jun College of Computer Science and Technology/Artificial Intelligence Nanjing University of Aeronautics Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems, but they are still trapped in training failures when the target functions to b... 详细信息
来源: 评论
Decoding the Echoes of Vision from fMRI: Memory Disentangling for Past Semantic Information
arXiv
收藏 引用
arXiv 2024年
作者: Xia, Runze Yin, Congchi Li, Piji 1 College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China 2 MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
The human visual system is capable of processing continuous streams of visual information, but how the brain encodes and retrieves recent visual memories during continuous visual processing remains unexplored. This st... 详细信息
来源: 评论
Cross-Subject Data Splitting for Brain-to-Text Decoding
arXiv
收藏 引用
arXiv 2023年
作者: Yin, Congchi Yu, Qian Fang, Zhiwei He, Jie Peng, Changping Lin, Zhangang Shao, Jingping Li, Piji Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China *** Beijing China
Recent major milestones have successfully decoded non-invasive brain signals (e.g. functional Magnetic Resonance Imaging (fMRI) and electroencephalogram (EEG)) into natural language. Despite the progress in model desi... 详细信息
来源: 评论
An Improved AdaBoost Method in Imbalanced Data Learning
An Improved AdaBoost Method in Imbalanced Data Learning
收藏 引用
Cyber-Physical Social intelligence (ICCSI), International Conference on
作者: Ting Li Xiaofeng Chen Weikai Li Department of Mathematics Chongqing Jiaotong University Chongqing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Learning from imbalanced datasets has recently received increasing research attention. Despite the remarkable results of AdaBoost in balanced situation, the imbalance problem remains to be solved. To address this, thi...
来源: 评论