This paper proposes the evolutionary generation of an artificial creature's personality by using the concept of multi-objective optimization. The artificial creature has its own genome and in which each chromosome...
详细信息
This paper proposes the evolutionary generation of an artificial creature's personality by using the concept of multi-objective optimization. The artificial creature has its own genome and in which each chromosome consists of many genes that contribute to defining its personality. The large number of genes allows for a highly complex system, however it becomes increasingly difficult and time-consuming to ensure reliability, variability and consistency for the artificial creature's personality while manually assigning gene values for the individual genome. Moreover, there needs user's preference to obtain artificial creature's personality by using evolutionary generation. Preference is strongly depend on each user and most of them would have difficulty to define their preference as a fitness function. To solve this problem, this paper proposes multi-objective generating process of an artificial creature's personality. Genome set is evolved by applying strength Pareto evolutionary algorithm (SPEA). To facilitate the individuality of generated artificial creature, complement of (1-k) dominance and pruning method considering deviation are proposed. Obtained genomes are tested by using an artificial creature, Rity in the virtual 3D world created in a PC.
This paper presents the components and overall architecture of the ubiquitous robot (Ubibot) system developed to demonstrate ubiquitous robotics, a new paradigm for integrated services. The system has been developed o...
详细信息
This paper presents the components and overall architecture of the ubiquitous robot (Ubibot) system developed to demonstrate ubiquitous robotics, a new paradigm for integrated services. The system has been developed on the basis of the definition of the ubiquitous robot as that of encompassing the software robot Sobot, embedded robot Embot and the mobile robot Mobot. This tripartite partition, which independently manifests intelligence, perception and action, enables the abstraction of intelligence through the standardization of sensory data and motor or action commands. The Ubibot system itself is introduced along with its component subsystems of Embots, the position Embot, vision Embot and sound Embot, the Mobots of Mybot and HSR, the Sobot, Rity, a virtual pet modeled as an artificial creature, and finally the middleware which seamlessly enables interconnection between other components. Three kinds of experiments are devised to demonstrate the fundamental features, of calm sensing, context awareness and seamless service transcending the spatial limitations in the abilities of earlier generation personal robots. The experiments demonstrate the proof of concept of this powerful new paradigm which shows great promise.
作者:
M. FeemsterD.M. DawsonA. BehalW. DixonMatthew Feemster received the B.S degree in Electrical Engineering from Clemson University
Clemson South Carolina in December 1994. Upon graduation he remained at Clemson University and received the M.S. degree in Electrical Engineering in 1997. During this time he also served as a research/teaching assistant. His research work focused on the design and implementation of various nonlinear control algorithms with emphasis on the induction motor and mechanical systems with friction present. He is currently working toward his Ph.D. degree in Electrical Engineering at Clemson University. Darren M. Dawson was born in 1962
in Macon Georgia. He received an Associate Degree in Mathematics from Macon Junior College in 1982 and a B.S. Degree in Electrical Engineering from the Georgia Institute of Technology in 1984. He then worked for Westinghouse as a control engineer from 1985 to 1987. In 1987 he returned to the Georgia Institute of Technology where he received the Ph.D. Degree in Electrical Engineering in March 1990. During this time he also served as a research/teaching assistant. In July 1990 he joined the Electrical and Computer Engineering Department and the Center for Advanced Manufacturing (CAM) at Clemson University where he currently holds the position of Professor. Under the CAM director's supervision he currently leads the Robotics and Manufacturing Automation Laboratory which is jointly operated by the Electrical and Mechanical Engineering departments. His main research interests are in the fields of nonlinear based robust adaptive and learning control with application to electro-mechanical systems including robot manipulators motor drives magnetic bearings flexible cables flexible beams and high-speed transport systems. Aman Behal was born in India in 1973. He received his Masters Degree in Electrical Engineering from Indian Institute of Technology
Bombay in 1996. He is currently working towards a Ph.D in Controls and Robotics at Clemson University. His research focuses on the control of no
In this paper, we extend the observer/control strategies previously published in [25] to an n -link, serially connected, direct drive, rigid link, revolute robot operating in the presence of nonlinear friction effects...
详细信息
In this paper, we extend the observer/control strategies previously published in [25] to an n -link, serially connected, direct drive, rigid link, revolute robot operating in the presence of nonlinear friction effects modeled by the Lu-Gre model. In addition, we also present a new adaptive control technique for compensating for the nonlinear parameterizable Stribeck effects. Specifically, an adaptive observer/controller scheme is developed which contains a feedforward approximation of the Stribeck effects. This feedforward approximation is used in a composite controller/observer strategy which forces the average square integral of the position tracking error to an arbitrarily small value. Experimental results are included to illustrate the performance of the proposed controllers.
作者:
BAITIS, AEAPPLEBEE, TRMCNAMARA, TMA. Erich Baitis:
a native of Germany came to the David W. Taylor Naval Ship R&D Center in 1957 as a cooperative student/trainee and received his B.S. degree in physics from Virginia Polytechnic Institute. As a 32-year-old naval architect in 1971 he received both the Vietnam Honor Service Medal and the Navy's Meritorious Civilian Service Award for his eight months as liaison with the Vietnamese Navy's ferro-cement program. As head of the Seakeeping and Stabilization Group of the Surface Ship Dynamics Branch his work has led to the development of a new standard Ship Motion Computer Program and the application of ship motions to ship habitability operability and survivability problems. A major area of this work has been the ship-aircraft interface which is particularly sensitive to ship motions wind and other environmental factors. He is a member of the American Society of Naval Engineers and was awarded the Solberg Award for 1982 “in recognition of significant engineering research and development contributions in the area of improved helicopter operations from a ship in a seaway.” Terrence A. Applebee:is currently a naval architect at the David W. Taylor Naval Ship R&D Center in the Surface Ship Dynamics Branch. he came to the Center after earning a B.S. degree in ocean engineering from Florida Institute of Technology in 1973. Since that time
he has worked in the areas of seakeeping performance evaluation ship-helicopter interfacing and human factor considerations. He is a member of the American Society of Naval Engineers and the Society of Naval Architects and Marine Engineers. Thomas M. McNamara:is an employee of the John Hopkins University Applied Physics Laboratory in the ocean data acquisition program. From 1979 to 1983
he worked at David W. Taylor Naval Ship R&D Center in the Surface Ship Dynamics Branch. His expertise has focused on the development of computer models for human factor evaluations as well as motion stabilization systems. He has participated in the development of advanced stabilizat
The FFG 7/LAMPS MK III Operator Guidance Manual (OGM) was developed for all FFG-7 class frigates which are not fin stabilized or are operating with the fins off. The OGM was developed to assis the ship operators of th...
The FFG 7/LAMPS MK III Operator Guidance Manual (OGM) was developed for all FFG-7 class frigates which are not fin stabilized or are operating with the fins off. The OGM was developed to assis the ship operators of the FFG-7 class in choosing ship speed and heading combinations which will minimize ship motion-related problems during various phases of the LAMPS deployment. Crew safety and performance were major concerns in the development of the OGM. This paper reviews the effect of human factors on ship operations during helicopter recovery, maintenance, and transit to and from the hangar.
A ship design methodology is presented for developing hull forms that attain improved performance in both seakeeping and resistance. Contrary to traditional practice, the methodology starts with developing a seakeepin...
A ship design methodology is presented for developing hull forms that attain improved performance in both seakeeping and resistance. Contrary to traditional practice, the methodology starts with developing a seakeeping-optimized hull form without making concessions to other performance considerations, such as resistance. The seakeeping-optimized hull is then modified to improve other performance characteristics without degrading the seakeeping. Presented is a point-design example produced by this methodology. Merits of the methodology and the point design are assessed on the basis of theoretical calculations and model experiments. This methodology is an integral part of the Hull Form Design System (HFDS) being developed for computer-supported naval ship design. The modularized character of HFDS and its application to hull form development are discussed.
暂无评论