咨询与建议

限定检索结果

文献类型

  • 531 篇 期刊文献
  • 44 篇 会议

馆藏范围

  • 575 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 480 篇 理学
    • 442 篇 物理学
    • 57 篇 天文学
    • 14 篇 生物学
    • 11 篇 数学
    • 8 篇 统计学(可授理学、...
    • 7 篇 化学
    • 7 篇 系统科学
  • 253 篇 工学
    • 174 篇 核科学与技术
    • 56 篇 计算机科学与技术...
    • 48 篇 软件工程
    • 14 篇 信息与通信工程
    • 14 篇 生物工程
    • 13 篇 生物医学工程(可授...
    • 10 篇 电子科学与技术(可...
    • 9 篇 材料科学与工程(可...
    • 9 篇 电气工程
    • 9 篇 控制科学与工程
    • 8 篇 化学工程与技术
    • 7 篇 机械工程
    • 7 篇 光学工程
    • 4 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 3 篇 土木工程
    • 3 篇 交通运输工程
  • 12 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 9 篇 医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 3 篇 法学
  • 3 篇 农学
  • 2 篇 教育学
  • 2 篇 文学
  • 1 篇 经济学

主题

  • 133 篇 hadron colliders
  • 49 篇 higgs bosons
  • 45 篇 w & z bosons
  • 39 篇 branching fracti...
  • 35 篇 lepton colliders
  • 34 篇 relativistic hea...
  • 30 篇 hadron-hadron sc...
  • 29 篇 particle decays
  • 28 篇 bottom quark
  • 23 篇 quark & gluon je...
  • 22 篇 supersymmetric m...
  • 22 篇 top quark
  • 22 篇 particle data an...
  • 22 篇 extensions of hi...
  • 22 篇 hadronic decays
  • 21 篇 leptonic, semile...
  • 21 篇 particle product...
  • 19 篇 particle dark ma...
  • 19 篇 bottom mesons
  • 19 篇 rare decays

机构

  • 283 篇 irfu cea univers...
  • 226 篇 department of mo...
  • 192 篇 west university ...
  • 192 篇 kirchhoff-instit...
  • 191 篇 infn e laborator...
  • 190 篇 faculty of scien...
  • 190 篇 department for p...
  • 189 篇 department of ph...
  • 180 篇 department physi...
  • 177 篇 department of ph...
  • 177 篇 department of ph...
  • 176 篇 department of ph...
  • 175 篇 deutsches elektr...
  • 174 篇 yerevan physics ...
  • 172 篇 fakultät für phy...
  • 171 篇 research center ...
  • 164 篇 graduate school ...
  • 160 篇 institute of phy...
  • 155 篇 institute of phy...
  • 149 篇 instituto de fís...

作者

  • 220 篇 m. lu
  • 141 篇 c. alexa
  • 140 篇 j. m. izen
  • 140 篇 g. bella
  • 140 篇 d. calvet
  • 139 篇 c. amelung
  • 138 篇 j. strandberg
  • 136 篇 b. konya
  • 136 篇 f. pastore
  • 135 篇 n. orlando
  • 130 篇 y. tayalati
  • 128 篇 t. pham
  • 128 篇 g. spigo
  • 127 篇 v. chiarella
  • 125 篇 f. siegert
  • 124 篇 a. dimitrievska
  • 124 篇 f. deliot
  • 122 篇 r. ströhmer
  • 121 篇 t. r. van daalen
  • 116 篇 y. tu

语言

  • 571 篇 英文
  • 4 篇 其他
检索条件"机构=MOE Engineering Research Center of Advanced Computer Application Technology"
575 条 记 录,以下是51-60 订阅
排序:
SVM-based deep stacking networks
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Jingyuan Feng, Kai Wu, Junjie MOE Engineering Research Center of Advanced Computer Application Technology School of Computer Science Engineering Beihang University Beijing100191 China Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operations School of Economics and Management Beihang University Beijing100191 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China
The deep network model, with the majority built on neural networks, has been proved to be a powerful framework to represent complex data for high performance machine learning. In recent years, more and more studies tu... 详细信息
来源: 评论
Brief Industry Paper: Towards Efficient Task Scheduling for AUTOSAR using Parallel Pruning
Brief Industry Paper: Towards Efficient Task Scheduling for ...
收藏 引用
Real-Time Systems Symposium (RTSS)
作者: Yanxing Yang Nan Zhang Dengke Yan Xian Wei Junlong Zhou Hong Liu Mingsong Chen MoE Engineering Research Center of SW/HW Co-Design Technology and Application East China Normal University School of Computer Science and Engineering Nanjing University of Science and Technology Shanghai Uni-Sentry Intelligent Technology Co. Ltd. China
As a standardized software framework and open E/E system architecture, the AUTomotive Open System ARchitecture (AUTOSAR) has been widely applied to autonomous driving systems to enable real-time control. However, due ...
来源: 评论
Reinforcement Learning-Based Explainable Recommendation over Knowledge Graphs with Negative Sampling
Reinforcement Learning-Based Explainable Recommendation over...
收藏 引用
Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing, UIC-ATC
作者: Siyuan Zhang Yuanxin Ouyang Zhuang Liu Wenge Rong Zhang Xiong State Key Laboratory of Software Development Environment Beihang University Beijing China Engineering Research Center of Advanced Computer Application Technology Ministry of Education Beihang University Beijing China
Introducing knowledge graphs (KGs) into the recommender systems not only improves their performance but also enhances the interpretability. However, most KG-based recommendation methods have the problem of inefficienc...
来源: 评论
MAKT: Multichannel Attention Networks based Knowledge Tracing with Representation Learning
MAKT: Multichannel Attention Networks based Knowledge Tracin...
收藏 引用
IEEE International Conference on Teaching, Assessment and Learning for engineering (TALE)
作者: Xuyang Jiang Yuanxin Ouyang Zhuang Liu Wenge Rong Zhang Xiong State Key Laboratory of Software Development Environment Beihang University Beijing China Engineering Research Center of Advanced Computer Application Technology Ministry of Education Beihang University Beijing China
As an effective and emerging component of intelligent education, Knowledge Tracing(KT) achieves the combination of artificial intelligence and individualized learning, whose aim is to assess students’ mastery of know...
来源: 评论
Towards Efficient Workflow Scheduling Over Yarn Cluster Using Deep Reinforcement Learning
Towards Efficient Workflow Scheduling Over Yarn Cluster Usin...
收藏 引用
IEEE Conference on Global Communications (GLOBECOM)
作者: Jianguo Xue Ting Wang Puyu Cai MoE Engineering Research Center of Software/Hardware Co-design Technology and Application Shanghai Key Lab. of Trustworthy Computing East China Normal University China Department of Computer Science and Engineering Michigan State University USA
Hadoop Yarn is an open-source cluster manager responsible for resource management and job scheduling. However, data-driven applications are typically organized into workflows that consist of a series of jobs with depe...
来源: 评论
research of Micro-expression Recognition Model based on Feature Unit
Research of Micro-expression Recognition Model based on Feat...
收藏 引用
IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C)
作者: Fei Yin Jinyi Xu Yixiang Chen School of Computer Science and Software Engineering East China Normal University Shanghai China MOE Enginering Research Center for Software/Hardware Co-design Technology and Application East China Normal University Shanghai China
Micro-expression which is the transient expression will be disclosed when people try to hide some kind of real inner emotions. Micro-expression changes so fast that few people detect its existence. As an effective beh... 详细信息
来源: 评论
AlphaStock: A buying-winners-and-selling-losers investment strategy using interpretable deep reinforcement attention networks
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Jingyuan Zhang, Yang Tang, Ke Wu, Junjie Xiong, Zhang MOE Engineering Research Center of Advanced Computer Application Technology School of Computer Science Engineering Beihang University Beijing China Institute of Economics School of Social Sciences Tsinghua University Beijing China Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operations School of Economics and Management Beihang University Beijing China Beijing Advanced Innovation Center for BDBC Beihang University Beijing China
Recent years have witnessed the successful marriage of finance innovations and AI techniques in various finance applications including quantitative trading (QT). Despite great research efforts devoted to leveraging de... 详细信息
来源: 评论
Constraining self-interacting dark matter with the full dataset of PandaX-II
收藏 引用
Science China(Physics,Mechanics & Astronomy) 2021年 第11期64卷 2-7页
作者: Jijun Yang Abdusalam Abdukerim Wei Chen Xun Chen Yunhua Chen Chen Cheng Xiangyi Cui Yingjie Fan Deqing Fang Changbo Fu Mengting Fu Lisheng Geng Karl Giboni Linhui Gu Xuyuan Guo Ke Han Changda He Shengming He Di Huang Yan Huang Ran Huo Yanlin Huang Zhou Huang Xiangdong Ji Yonglin Ju Shuaijie Li Qing Lin Huaxuan Liu Jianglai Liu Xiaoying Lu Wenbo Ma Yugang Ma Yajun Mao Yue Meng Nasir Shaheed Kaixiang Ni Jinhua Ning Xuyang Ning Xiangxiang Ren Changsong Shang Guofang Shen Lin Si Andi Tan Anqing Wang Hongwei Wang Meng Wang QiuHong Wang Siguang Wang Wei Wang Xiuli Wang Zhou Wang Mengmeng Wu Shiyong Wu Weihao Wu Jingkai Xia Mengjiao Xiao Xiang Xiao Pengwei Xie Binbin Yan Yong Yang Chunxu Yu Hai-Bo Yu Jumin Yuan Ying Yuan Xinning Zeng Dan Zhang Tao Zhang Li Zhao Qibin Zheng Jifang Zhou Ning Zhou Xiaopeng Zhou School of Physics and Astronomy Shanghai Jiao Tong UniversityMOE Key Laboratory for Particle Astrophysics and CosmologyShanghai Key Laboratory for Particle Physics and CosmologyShanghai 200240China Shanghai Jiao Tong University Sichuan Research Institude Chengdu 610213China Yalong River Hydropower Development Company Ltd.Chengdu 610051China School of Physics Sun Yat-sen UniversityGaungzhou 510275China Tsung-Dao Lee Institute Shanghai 200240China School of Physics Nankai UniversityTianjin 300071China Key Laboratory of Nuclear Physics and Ion-beam Application(MOE) Institute of Modern PhysicsFudan UniversityShanghai 200433China School of Physics Peking UniversityBeijing 100871China School of Physics Beihang UniversityBeijing 100191China International Research Center for Nuclei and Particles in the Cosmos&Beijing Key Laboratory of Advanced Nuclear Materials and Physics Beihang UniversityBeijing 100191China Shandong Institute of Advanced Technology Jinan 250103China School of Medical Instrument and Food Engineering University of Shanghai for Science and TechnologyShanghai 200093China Department of Physics University of MarylandCollege ParkMaryland 20742USA School of Mechanical Engineering Shanghai Jiao Tong UniversityShanghai 200240China State Key Laboratory of Particle Detection and Electronics University of Science and Technology of ChinaHefei 230026China Department of Modern Physics University of Science and Technology of ChinaHefei 230026China Key Laboratory of Particle Physics and Particle Irradiation of Ministry of Education Shandong UniversityJinan 250100China Research Center for Particle Science and Technology Institute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao 266237China Shanghai Advanced Research Institute Chinese Academy of SciencesShanghai 201210China Department of Physics and Astronomy University of CaliforniaRiversideCalifornia 92507USA Center of High Energy Physics Peking UniversityBeijing 100871China
Self-interacting dark matter(SIDM)is a leading candidate proposed to solve discrepancies between predictions of the prevailing cold dark matter theory and observations of *** SIDM models predict the existence of a lig... 详细信息
来源: 评论
Multi-label sparse coding for automatic image annotation
Multi-label sparse coding for automatic image annotation
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Changhu Wang Shuicheng Yan Lei Zhang Hong-Jiang Zhang MOE-MS Key Laboratory of MCC University of Science and Technology China Department of Electrical and Computer Engineering National University of Singapore Singapore Microsoft Research Asia China Microsoft Advanced Technology Center Beijing China
In this paper, we present a multi-label sparse coding framework for feature extraction and classification within the context of automatic image annotation. First, each image is encoded into a so-called supervector, de... 详细信息
来源: 评论
Cognizant Resource Balancing in Montgomery Modular Multiplication Optimization for Dsp
SSRN
收藏 引用
SSRN 2024年
作者: Tao, Qiqi Li, Liying Zhou, Junlong Cao, Guitao Meng, Dan Shanghai Key Laboratory of Trustworthy Computing MoE Engineering Research Center of SW/HW Co-design Technology and Application East China Normal University Shanghai200062 China School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China
The performance of modular multiplication directly influences the efficiency of a majority of encryption ***, there are numerous FPGA-based acceleration techniques targeting modular ***, many of these implementations ... 详细信息
来源: 评论