咨询与建议

限定检索结果

文献类型

  • 508 篇 期刊文献
  • 407 篇 会议
  • 1 册 图书

馆藏范围

  • 916 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 757 篇 工学
    • 415 篇 计算机科学与技术...
    • 301 篇 电气工程
    • 275 篇 信息与通信工程
    • 209 篇 软件工程
    • 113 篇 控制科学与工程
    • 60 篇 电子科学与技术(可...
    • 45 篇 生物工程
    • 43 篇 仪器科学与技术
    • 29 篇 机械工程
    • 20 篇 生物医学工程(可授...
    • 19 篇 光学工程
    • 18 篇 交通运输工程
    • 13 篇 动力工程及工程热...
    • 13 篇 化学工程与技术
    • 12 篇 材料科学与工程(可...
    • 12 篇 建筑学
    • 9 篇 土木工程
    • 8 篇 石油与天然气工程
  • 236 篇 理学
    • 123 篇 数学
    • 60 篇 生物学
    • 47 篇 物理学
    • 42 篇 系统科学
    • 38 篇 统计学(可授理学、...
    • 21 篇 化学
  • 84 篇 管理学
    • 62 篇 管理科学与工程(可...
    • 23 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 18 篇 医学
    • 15 篇 临床医学
  • 9 篇 法学
    • 7 篇 社会学
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 6 篇 农学
  • 3 篇 教育学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 40 篇 feature extracti...
  • 35 篇 security
  • 24 篇 deep learning
  • 21 篇 training
  • 20 篇 physical layer s...
  • 20 篇 estimation
  • 17 篇 wireless communi...
  • 17 篇 interference
  • 16 篇 ofdm
  • 15 篇 signal to noise ...
  • 15 篇 optimization
  • 15 篇 receivers
  • 14 篇 internet of thin...
  • 14 篇 task analysis
  • 13 篇 resource managem...
  • 13 篇 smart grid
  • 13 篇 privacy
  • 13 篇 robustness
  • 12 篇 anomaly detectio...
  • 12 篇 authentication

机构

  • 229 篇 xi an jiao tong ...
  • 54 篇 ministry of educ...
  • 34 篇 xi an jiao tong ...
  • 32 篇 moe key lab for ...
  • 25 篇 xi an jiao tong ...
  • 23 篇 xi an jiao tong ...
  • 20 篇 xi an jiao tong ...
  • 18 篇 moe key laborato...
  • 18 篇 tsinghua univ de...
  • 17 篇 xi an jiao tong ...
  • 14 篇 hong kong polyte...
  • 12 篇 xi an jiao tong ...
  • 11 篇 ministry of educ...
  • 11 篇 xi an jiao tong ...
  • 11 篇 moe key lab for ...
  • 10 篇 univ massachuset...
  • 10 篇 xi an jiao tong ...
  • 10 篇 xi an jiao tong ...
  • 10 篇 guangdong xi'an ...
  • 10 篇 school of mathem...

作者

  • 108 篇 guan xiaohong
  • 63 篇 yin qinye
  • 60 篇 zhang weile
  • 60 篇 wang pinghui
  • 56 篇 zhang xinman
  • 55 篇 wang hui-ming
  • 53 篇 meng deyu
  • 43 篇 yang qingyu
  • 43 篇 shen chao
  • 41 篇 qin tao
  • 37 篇 xu xuebin
  • 37 篇 an dou
  • 32 篇 xiaohong guan
  • 31 篇 tao jing
  • 29 篇 wang wenjie
  • 28 篇 qinye yin
  • 27 篇 ma xiaobo
  • 27 篇 zheng qinghua
  • 25 篇 zhao junzhou
  • 25 篇 hui-ming wang

语言

  • 835 篇 英文
  • 66 篇 其他
  • 15 篇 中文
检索条件"机构=MOE Key Lab For Intelligent Networks and Network Security"
916 条 记 录,以下是1-10 订阅
排序:
Sketching Data Distribution by Rotation
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2024年 第11期36卷 7015-7029页
作者: Lei, Runze Wang, Pinghui Li, Rundong Jia, Peng Zhao, Junzhou Guan, Xiaohong Xi An Jiao Tong Univ MOE Key Lab Intelligent Networks & Network Secur Xian 710049 Shaanxi Peoples R China
Kernel density estimation is a useful method for estimating the probability distribution of data. It is a challenge to achieve efficient kernel density estimation, especially for large-scale and high-dimension stream ... 详细信息
来源: 评论
A Revisit to Graph Neighborhood Cardinality Estimation  40
A Revisit to Graph Neighborhood Cardinality Estimation
收藏 引用
40th IEEE International Conference on Data Engineering, ICDE 2024
作者: Wang, Pinghui Zhang, Yuanming Cheng, Kuankuan Zhao, Junzhou Xi'An Jiaotong University MOE Key Laboratory for Intelligent Networks and Network Security Xi'an China
Graph data are ubiquitous in real-world systems such as social networks and protein-protein interaction networks. In many applications, nodes usually are associated with real-value attributes, e.g., age, income, and w... 详细信息
来源: 评论
A Multi-scale Perception Enhancement network for Underwater Waste Detection  9
A Multi-scale Perception Enhancement Network for Underwater ...
收藏 引用
9th International Conference on Image, Vision and Computing, ICIVC 2024
作者: Li, Yangke Zhang, Xinman MOE Key Lab for Intelligent Networks & Network Security School of Automation Science and Engineering Xi’an Jiaotong University Xi’an China
Underwater waste detection plays an important role in aquatic ecosystems and environmental protection. In fact, waste deposits in aquatic environments not only cause water contamination, but also pose potential risks ... 详细信息
来源: 评论
Simulating learning methodology(SLeM):an approach to machine learning automation
收藏 引用
National Science Review 2024年 第8期11卷 12-17页
作者: Zongben Xu Jun Shu Deyu Meng School of Mathematics and Statistics Xi'an Jiaotong University Ministry of Education Key Lab of Intelligent Networks and Network Security Xi'an Jiaotong University Peng Cheng Laboratory Pazhou Laboratory(Huangpu)
MACHINE LEARNING REQUIRES AUTOMATION Machine learning (ML) is a fundamental technology of artificial intelligence(AI) that focuses on searching the possibly existing mapping f:x→y to fit a given dataset D={(xi,y... 详细信息
来源: 评论
intelligent management of waste bins in indoor public places based on waste detection and recognition
收藏 引用
COMPUTERS & ELECTRICAL ENGINEERING 2025年 123卷
作者: Li, Yangke Zhang, Xinman Xi An Jiao Tong Univ Fac Elect & Informat Engn Sch Automat Sci & Engn MOE Key Lab Intelligent Networks & Network Secur Xian Peoples R China
Due to the lack of convenient waste bins nearby, many people choose to litter indiscriminately in indoor public places. Dirty floors not only diminish the shopping experience of customers, but also increase potential ... 详细信息
来源: 评论
Hierarchical Task Planning for Power Line Flow Regulation
收藏 引用
CSEE Journal of Power and Energy Systems 2024年 第1期10卷 29-40页
作者: Chenxi Wang Youtian Du Yanhao Huang Yuanlin Chang Zihao Guo the Ministry of Education Key Lab for Intelligent Networks and Network Security Xi'an Jiaotong UniversityXi'an 713599China the State Key Laboratory of Power Grid Safety and Energy Conservation China Electric Power Research InstituteBeijing 100192China
The complexity and uncertainty in power systems cause great challenges to controlling power *** a popular data-driven technique,deep reinforcement learning(DRL)attracts attention in the control of power ***,DRL has so... 详细信息
来源: 评论
Lightweight deep learning model for underwater waste segmentation based on sonar images
收藏 引用
WASTE MANAGEMENT 2024年 190卷 63-73页
作者: Li, Yangke Zhang, Xinman Xi An Jiao Tong Univ Fac Elect & Informat Engn Sch Automat Sci & Engn MOE Key Lab Intelligent Networks & Network Secur Xian 710049 Shaanxi Peoples R China
In recent years, the rapid accumulation of marine waste not only endangers the ecological environment but also causes seawater pollution. Traditional manual salvage methods often have low efficiency and pose safety ri... 详细信息
来源: 评论
Graph contrastive learning with high-order feature interactions and adversarial Wasserstein-distance-based alignment
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 2025年 第5-6期16卷 3449-3460页
作者: Wang, Chenxu Wan, Zhizhong Meng, Panpan Wang, Shihao Wang, Zhanggong Xi An Jiao Tong Univ Sch Software Engn Xian 710049 Peoples R China Xi An Jiao Tong Univ MoE Key Lab Intelligent Networks & Network Secur Xian 710049 Peoples R China
Graph contrastive learning (GCL) has proven to be an effective approach for unsupervised representation learning on graph-structured data. However, existing GCL models face two major limitations. First, existing featu... 详细信息
来源: 评论
Physically Realizable Adversarial Creating Attack Against Vision-Based BEV Space 3D Object Detection
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2025年 34卷 538-551页
作者: Wang, Jian Li, Fan Lv, Song He, Lijun Shen, Chao Xi An Jiao Tong Univ Sch Informat & Commun Engn Shaanxi Key Lab Deep Space Explorat Intelligent In Xian 710049 Peoples R China Xi An Jiao Tong Univ Sch Cyber Sci & Engn MOE Key Lab Intelligent Networks & Network Secur Xian 710049 Peoples R China
Vision-based 3D object detection, a cost-effective alternative to LiDAR-based solutions, plays a crucial role in modern autonomous driving systems. Meanwhile, deep models have been proven susceptible to adversarial ex... 详细信息
来源: 评论
CMW-Net: an adaptive robust algorithm for sample selection and label correction
收藏 引用
National Science Review 2023年 第6期10卷 19-23页
作者: Jun Shu Xiang Yuan Deyu Meng School of Mathematics and Statistics Xi'an Jiaotong University Ministry of Education Key Lab of Intelligent Networks and Network Security Xi'an Jiaotong University Peng Cheng Laboratory Pazhou Laboratory (Huangpu)
PROBLEM Deep neural networks (DNNs) have recently achieved impressive performance in various *** successis largely attributed to massive but carefully labeled data expected to properly and sufficiently simulate testin...
来源: 评论