咨询与建议

限定检索结果

文献类型

  • 31 篇 会议
  • 25 篇 期刊文献

馆藏范围

  • 56 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 37 篇 工学
    • 35 篇 计算机科学与技术...
    • 29 篇 软件工程
    • 9 篇 信息与通信工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 化学工程与技术
    • 3 篇 网络空间安全
    • 2 篇 控制科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 交通运输工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 18 篇 管理学
    • 13 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 14 篇 理学
    • 9 篇 数学
    • 4 篇 统计学(可授理学、...
    • 3 篇 化学
    • 2 篇 物理学
    • 1 篇 生物学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 1 篇 药学(可授医学、理...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 5 篇 semantics
  • 4 篇 xml
  • 3 篇 costs
  • 2 篇 query processing
  • 2 篇 monitoring
  • 2 篇 computer vision
  • 2 篇 convolutional ne...
  • 2 篇 ontology
  • 1 篇 web data managem...
  • 1 篇 sensor nodes
  • 1 篇 image enhancemen...
  • 1 篇 text categorizat...
  • 1 篇 knowledge engine...
  • 1 篇 representation l...
  • 1 篇 collaborative fi...
  • 1 篇 heart rate
  • 1 篇 p2p computing an...
  • 1 篇 multidimensional...
  • 1 篇 semantic segment...
  • 1 篇 data privacy

机构

  • 14 篇 school of inform...
  • 7 篇 key lab. of inte...
  • 7 篇 school of comput...
  • 7 篇 peng cheng labor...
  • 7 篇 key lab of data ...
  • 6 篇 school of cyber ...
  • 6 篇 key laboratory o...
  • 5 篇 moe key lab of d...
  • 4 篇 institute of inf...
  • 4 篇 renmin universit...
  • 3 篇 aimc lab school ...
  • 3 篇 alibaba group
  • 3 篇 school of cyber ...
  • 3 篇 institute of com...
  • 3 篇 key lab of data ...
  • 2 篇 gaoling school o...
  • 2 篇 key lab. of data...
  • 2 篇 state key labora...
  • 2 篇 the key lab of d...
  • 2 篇 key lab of data ...

作者

  • 10 篇 li xirong
  • 8 篇 chen hong
  • 7 篇 li cuiping
  • 6 篇 hong chen
  • 6 篇 huang qingming
  • 6 篇 du xiaoyong
  • 6 篇 cao xiaochun
  • 6 篇 xu qianqian
  • 6 篇 cuiping li
  • 4 篇 yang zhiyong
  • 4 篇 wang zitai
  • 4 篇 meng benyuan
  • 3 篇 liu jun
  • 3 篇 suyun zhao
  • 3 篇 wang qiuyue
  • 3 篇 he kun
  • 2 篇 he yuan
  • 2 篇 juan cao
  • 2 篇 zhao suyun
  • 2 篇 du pan

语言

  • 54 篇 英文
  • 2 篇 其他
检索条件"机构=MOE Key Lab. of Data Engineering and Knowledge Engineering"
56 条 记 录,以下是41-50 订阅
排序:
EvoChart: A Benchmark and a Self-Training Approach Towards Real-World Chart Understanding
arXiv
收藏 引用
arXiv 2024年
作者: Huang, Muye Lai, Han Zhang, Xinyu Wu, Wenjun Ma, Jie Zhang, Lingling Liu, Jun School of Computer Science and Technology Xi’an Jiaotong University China MOE KLINNS Lab Xi’an Jiaotong University China Shaanxi Province Key Laboratory of Big Data Knowledge Engineering China
Chart understanding enables automated data analysis for humans, which requires models to achieve highly accurate visual comprehension. While existing Visual Language Models (VLMs) have shown progress in chart understa... 详细信息
来源: 评论
SP3: Enhancing Structured Pruning via PCA Projection
arXiv
收藏 引用
arXiv 2023年
作者: Hu, Yuxuan Zhang, Jing Zhao, Zhe Zhao, Chen Chen, Xiaodong Li, Cuiping Chen, Hong School of Information Renmin University of China Beijing China Key Laboratory of Data Engineering and Knowledge Engineering MOE China Engineering Research Center of Database and Business Intelligence MOE China Tencent AI Lab Tencent Beijing China School of Computer Science and Technology Xi'an Jiaotong University Xi'An China
Structured pruning is a widely used technique for reducing the size of pre-trained language models (PLMs), but current methods often overlook the potential of compressing the hidden dimension (d) in PLMs, a dimension ...
来源: 评论
QUANTUM LOVÁSZ LOCAL LEMMA: SHEARER’S BOUND IS TIGHT
arXiv
收藏 引用
arXiv 2018年
作者: He, Kun Li, Qian Sun, Xiaoming Zhang, Jiapeng The Key Lab of Data Engineering and Knowledge Engineering MOE Renmin University of China Beijing China Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China University of Southern California United States
The Lovász Local Lemma (LLL) is a very powerful tool in combinatorics and probability theory to show the possibility of avoiding all bad events under some weakly dependent conditions. In a seminal paper, Ambainis... 详细信息
来源: 评论
SAMPLING LOVÁSZ LOCAL LEMMA FOR GENERAL CONSTRAINT SATISFACTION SOLUTIONS IN NEAR-LINEAR TIME
arXiv
收藏 引用
arXiv 2022年
作者: He, Kun Wang, Chunyang Yin, Yitong The Key Lab of Data Engineering and Knowledge Engineering MOE Renmin University of China No. 59 Zhongguancun Street Haidian District Beijing China State Key Laboratory for Novel Software Technology Nanjing University 163 Xianlin Avenue Jiangsu Province Nanjing China
We give a fast algorithm for sampling uniform solutions of general constraint satisfaction problems (CSPs) in a local lemma regime. Suppose that the CSP has n variables with domain size at most q, each constraint cont... 详细信息
来源: 评论
Chinese Emergency Event Extraction Based on Contrastive Learning with Event Semantic Features  19
Chinese Emergency Event Extraction Based on Contrastive Lear...
收藏 引用
19th International Conference on Natural Computation, Fuzzy Systems and knowledge Discovery, ICNC-FSKD 2023
作者: Sheng, Xinyi Gu, Jinguang Yan, Youcheng Xu, Fangfang Wuhan University of Science and Technology College of Computer Science and Technology Wuhan430065 China Institute of Big Data Science and Engineering Wuhan University of Science and Technology Wuhan430065 China The Key Lab. of Rich-Media Knowledge Org. and Serv. of Digit. Publ. Content Inst. of Sci. and Tech. Info. of China Beijing100038 China
Extracting emergency events from a large amount of unstructured information is essential for improving early warning and emergency response. Existing event extraction methods for specialist fields often rely on well-d... 详细信息
来源: 评论
Suppress Content Shift: Better Diffusion Features via Off-the-Shelf Generation Techniques  38
Suppress Content Shift: Better Diffusion Features via Off-th...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Meng, Benyuan Xu, Qianqian Wang, Zitai Yang, Zhiyong Cao, Xiaochun Huang, Qingming Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China Peng Cheng Laboratory China School of Computer Science and Tech. University of Chinese Academy of Sciences China School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University China Key Laboratory of Big Data Mining and Knowledge Management CAS China
Diffusion models are powerful generative models, and this capability can also be applied to discrimination. The inner activations of a pre-trained diffusion model can serve as features for discriminative tasks, namely...
来源: 评论
Not All Diffusion Model Activations Have Been Evaluated as Discriminative Features  38
Not All Diffusion Model Activations Have Been Evaluated as D...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Meng, Benyuan Xu, Qianqian Wang, Zitai Cao, Xiaochun Huang, Qingming Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China Peng Cheng Laboratory China School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University China School of Computer Science and Tech. University of Chinese Academy of Sciences China Key Laboratory of Big Data Mining and Knowledge Management CAS China
Diffusion models are initially designed for image generation. Recent research shows that the internal signals within their backbones, named activations, can also serve as dense features for various discriminative task...
来源: 评论
Learning Two-Stream CNN for Multi-Modal Age-related Macular Degeneration Categorization
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Weisen Li, Xirong Xu, Zhiyan Yu, Weihong Zhao, Jianchun Ding, Dayong Chen, Youxin The MoE Key Lab of Data Engineering and Knowledge Engineering Renmin University of China Beijing100872 China Aimc Lab School of Information Renmin University of China Beijing100872 China Vistel Ai Lab Visionary Intelligence Ltd. Beijing100872 China The Key Lab of Ocular Fundus Disease Chinese Academy of Medical Sciences Dept. of Ophthalmology Peking Union Medical College Hospital Beijing100730 China
This paper tackles automated categorization of Agerelated Macular Degeneration (AMD), a common macular disease among people over 50. Previous research efforts mainly focus on AMD categorization with a single-modal inp... 详细信息
来源: 评论
QGEval: Benchmarking Multi-dimensional Evaluation for Question Generation
arXiv
收藏 引用
arXiv 2024年
作者: Fu, Weiping Wei, Bifan Hu, Jianxiang Cai, Zhongmin Liu, Jun School of Computer Science and Technology Xi’an Jiaotong University Xi’an China School of Continuing Education Xi’an Jiaotong University Xi’an China MOE KLINNS Lab School of Automation Science and Engineering Xi’an Jiaotong University Xi’an China Shaanxi Province Key Laboratory of Big Data Knowledge Engineering Xi’an Jiaotong University Xi’an China
Automatically generated questions often suffer from problems such as unclear expression or factual inaccuracies, requiring a reliable and comprehensive evaluation of their quality. Human evaluation is widely used in t... 详细信息
来源: 评论
Reading-strategy Inspired Visual Representation Learning for Text-to-Video Retrieval
arXiv
收藏 引用
arXiv 2022年
作者: Dong, Jianfeng Wang, Yabing Chen, Xianke Qu, Xiaoye Li, Xirong He, Yuan Wang, Xun The College of Computer and Information Engineering Zhejiang Gongshang University Hangzhou310035 China The State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences Beijing100093 China The School of Electronic Information and Communications Huazhong University of Science and Technology Hubei430074 China The Key Lab of Data Engineering and Knowledge Engineering Renmin University of China The AIMC Lab. School of Information Renmin University of China Beijing100872 China The Alibaba Group Beijing100102 China
This paper aims for the task of text-to-video retrieval, where given a query in the form of a natural-language sentence, it is asked to retrieve videos which are semantically relevant to the given query, from a great ... 详细信息
来源: 评论