咨询与建议

限定检索结果

文献类型

  • 206 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 212 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 169 篇 理学
    • 96 篇 物理学
    • 66 篇 数学
    • 48 篇 天文学
    • 44 篇 统计学(可授理学、...
    • 9 篇 生物学
    • 8 篇 系统科学
    • 5 篇 化学
    • 3 篇 地质学
  • 78 篇 工学
    • 40 篇 计算机科学与技术...
    • 33 篇 软件工程
    • 14 篇 核科学与技术
    • 11 篇 信息与通信工程
    • 6 篇 光学工程
    • 6 篇 控制科学与工程
    • 6 篇 生物工程
    • 5 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 生物医学工程(可授...
    • 3 篇 力学(可授工学、理...
    • 3 篇 动力工程及工程热...
    • 3 篇 建筑学
    • 3 篇 化学工程与技术
    • 3 篇 安全科学与工程
  • 19 篇 经济学
    • 19 篇 应用经济学
  • 11 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 5 篇 农学
    • 4 篇 作物学
  • 4 篇 医学
    • 3 篇 公共卫生与预防医...
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 教育学

主题

  • 32 篇 branching fracti...
  • 32 篇 lepton colliders
  • 20 篇 hadronic decays
  • 19 篇 particle decays
  • 15 篇 rare decays
  • 14 篇 bottom mesons
  • 14 篇 leptonic, semile...
  • 11 篇 bottom quark
  • 10 篇 cp violation
  • 10 篇 flavor changing ...
  • 8 篇 quarkonia
  • 8 篇 particle interac...
  • 8 篇 charmed baryons
  • 7 篇 precision measur...
  • 7 篇 particle data an...
  • 6 篇 exotic mesons
  • 5 篇 particle dark ma...
  • 5 篇 electroweak inte...
  • 5 篇 quark model
  • 5 篇 quark mixing

机构

  • 83 篇 indian institute...
  • 82 篇 brookhaven natio...
  • 82 篇 indian institute...
  • 82 篇 university of ha...
  • 82 篇 showa pharmaceut...
  • 82 篇 virginia polytec...
  • 82 篇 high energy acce...
  • 82 篇 department of ph...
  • 82 篇 nara women’s uni...
  • 82 篇 niigata universi...
  • 81 篇 osaka city unive...
  • 81 篇 university of ci...
  • 81 篇 institut für exp...
  • 80 篇 max-planck-insti...
  • 80 篇 yamagata univers...
  • 79 篇 key laboratory o...
  • 79 篇 novosibirsk stat...
  • 79 篇 earthquake resea...
  • 79 篇 budker institute...
  • 79 篇 university of mi...

作者

  • 82 篇 m. starič
  • 82 篇 a. ishikawa
  • 82 篇 m. takizawa
  • 81 篇 h. aihara
  • 81 篇 f. tenchini
  • 79 篇 y. jin
  • 79 篇 k. tanida
  • 79 篇 s. c. lee
  • 78 篇 s. cunliffe
  • 78 篇 g. pakhlova
  • 75 篇 y. b. li
  • 75 篇 k. inami
  • 75 篇 m. iwasaki
  • 75 篇 j. libby
  • 74 篇 v. zhukova
  • 73 篇 d. cinabro
  • 70 篇 k. miyabayashi
  • 70 篇 t. uglov
  • 69 篇 t. v. dong
  • 69 篇 m.-z. wang

语言

  • 205 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=MOE Key Laboratory of Advanced Theory and Application in Statistics and Data Science"
212 条 记 录,以下是111-120 订阅
排序:
Optimal subsampling for the Cox proportional hazards model with massive survival data
arXiv
收藏 引用
arXiv 2023年
作者: Qiao, Nan Li, Wangcheng Xiao, Feng Lin, Cunjie Zhou, Yong Center for Applied Statistics Renmin University of China Beijing100872 China School of Statistics Renmin University of China Beijing100872 China School of Statistics Beijing Normal University Beijing100875 China Sichuan Rural Credit Union Chengdu61000 China Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE Shanghai200062 China Academy of Statistics and Interdisciplinary Sciences East China Normal University Shanghai200062 China
The use of massive survival data has become common in survival analysis. In this study, a subsampling algorithm is proposed for the Cox proportional hazards model with time-dependent covariates when the sample is extr... 详细信息
来源: 评论
Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud Semantic Segmentation via Decoupling Optimization
arXiv
收藏 引用
arXiv 2024年
作者: Li, Mengtian Lin, Shaohui Wang, Zihan Shen, Yunhang Zhang, Baochang Ma, Lizhuang Shanghai University China Shanghai Engineering Research Center of Motion Picture Special Effects China East China Normal University China Key Laboratory of Advanced Theory and Application in Statistics and Data Science Ministry of Education China Beihang University China Tencent Youtu Lab China
Semi-supervised learning (SSL), thanks to the significant reduction of data annotation costs, has been an active research topic for large-scale 3D scene understanding. However, the existing SSL-based methods suffer fr... 详细信息
来源: 评论
ENSEMBLE DOMAIN DECOMPOSITION ALGORITHM FOR THE FULLY-MIXED RANDOM STOKES-DARCY MODEL WITH THE BEAVERS-JOSEPH INTERFACE CONDITIONS
arXiv
收藏 引用
arXiv 2022年
作者: Shi, Feng Sun, Yizhong Zheng, Haibiao College of Science Harbin Institute of Technology Shenzhen China School of Mathematical Sciences East China Normal University Shanghai China School of Mathematical Sciences East China Normal University Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice Key Laboratory of Advanced Theory and Application in Statistics and Data Science East China Normal University Shanghai China
In this paper, an efficient ensemble domain decomposition algorithm is proposed for fast solving the fully-mixed random Stokes-Darcy model with the physically realistic Beavers-Joseph (BJ) interface conditions. We uti... 详细信息
来源: 评论
On the estimation of high-dimensional integrated covariance matrices based on high-frequency data with multiple transactions
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Moming Xia, Ningning Zhou, Yong School of Statistics and Management Shanghai University of Finance and Economics 777 Guo Ding Road Shanghai200433 China School of Statistics and Management Shanghai Key Laboratory of Financial Information Technology Shanghai University of Finance and Economics 777 Guo Ding Road Shanghai200433 China Faculty of Economics and Management East China Normal University Shanghai200241 China Academy of Mathematics and Systems Science Chinese Academy of Science Beijing100190 China Key Laboratory of Advanced Theory and Application in Statistics and Data Science MOE Academy of Statistics and Interdisciplinary Sciences School of Statistics East China Normal University Shanghai200062 China
High-frequency data in financial markets often include multiple transactions at each recording time due to the mechanism of recording. Using random matrix theory, this paper considers the estimation of integrated cova... 详细信息
来源: 评论
On stochastic control problems with higher-order moments
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Yike Liu, Jingzhen Bensoussan, Alain Yiu, Ka-Fai Cedric Wei, Jiaqin School of Finance Chongqing Technology and Business University Chongqing400067 China China Institute for Actuarial Science Central University of Finance and Economics Beijing100081 China Naveen Jindal School of Management University of Texas at Dallas DallasTX75083 United States Department of Applied Mathematics The Hong Kong Polytechnic University Kowloon Hunghom Hong Kong Key Laboratory of Advanced Theory and Application in Statistics and Data Science MOE School of Statistics East China Normal University Shanghai200241 China
In this paper, we focus on a class of time-inconsistent stochastic control problems, where the objective function includes the mean and several higher-order central moments of the terminal value of state. To tackle th... 详细信息
来源: 评论
Measurement of solar pp neutrino flux using electron recoil data from PandaX-4T commissioning run
收藏 引用
Chinese Physics C 2024年 第9期48卷 1-7,300页
作者: Xiaoying Lu Abdusalam Abdukerim Zihao Bo Wei Chen Xun Chen Yunhua Chen Chen Cheng Zhaokan Cheng Xiangyi Cui Yingjie Fan Deqing Fang Lisheng Geng Karl Giboni Xuyuan Guo Chencheng Han Ke Han Changda He Jinrong He Di Huang Junting Huang Zhou Huang Ruquan Hou Yu Hou Xiangdong Ji Yonglin Ju Chenxiang Li Jiafu Li Mingchuan Li Shuaijie Li Tao Li Qing Lin Jianglai Liu Congcong Lu Lingyin Luo Yunyang Luo Wenbo Ma Yugang Ma Yajun Mao Yue Meng Xuyang Ning Binyu Pang Ningchun Qi Zhicheng Qian Xiangxiang Ren Nasir Shaheed Xiaofeng Shang Xiyuan Shao Guofang Shen Manbin Shen Lin Si Wenliang Sun Yi Tao Anqing Wang Meng Wang Qiuhong Wang Shaobo Wang Siguang Wang Wei Wang Xiuli Wang Xu Wang Zhou Wang Yuehuan Wei Mengmeng Wu Weihao Wu Yuan Wu Mengjiao Xiao Xiang Xiao Kaizhi Xiong Binbin Yan Xiyu Yan Yong Yang Chunxu Yu Ying Yuan Zhe Yuan Youhui Yun Xinning Zeng Minzhen Zhang Peng Zhang Shibo Zhang Shu Zhang Tao Zhang Wei Zhang Yang Zhang Yingxin Zhang Yuanyuan Zhang Li Zhao Jifang Zhou Ning Zhou Xiaopeng Zhou Yubo Zhou Zhizhen Zhou Research Center for Particle Science and Technology Institute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao 266237China Key Laboratory of Particle Physics and Particle Irradiation of Ministry of Education Shandong UniversityQingdao 266237China School of Physics and Astronomy Shanghai Jiao Tong UniversityKey Laboratory for Particle Astrophysics and Cosmology(MoE)Shanghai Key Laboratory for Particle Physics and CosmologyShanghai 200240China New Cornerstone Science Laboratory Tsung-Dao Lee InstituteShanghai Jiao Tong UniversityShanghai 200240China Shanghai Jiao Tong University Sichuan Research Institute Chengdu 610213China Jinping Deep Underground Frontier Science and Dark Matter Key Laboratory of Sichuan Province Liangshan 615000China Yalong River Hydropower Development Company Ltd.288 Shuanglin RoadChengdu 610051China School of Physics Sun Yat-Sen UniversityGuangzhou 510275China Sino-French Institute of Nuclear Engineering and Technology Sun Yat-Sen UniversityZhuhai 519082China Department of Physics Yantai UniversityYantai 264005China Key Laboratory of Nuclear Physics and Ion-beam Application(MOE) Institute of Modern PhysicsFudan UniversityShanghai 200433China School of Physics Beihang UniversityBeijing 102206China Beijing Key Laboratory of Advanced Nuclear Materials and Physics Beihang UniversityBeijing 102206China Peng Huanwu Collaborative Center for Research and Education Beihang UniversityBeijing 100191China Southern Center for Nuclear-Science Theory(SCNT) Institute of Modern PhysicsChinese Academy of SciencesHuizhou 516000China School of Mechanical Engineering Shanghai Jiao Tong UniversityShanghai 200240China Department of Physics University of MarylandCollege ParkMaryland 20742USA State Key Laboratory of Particle Detection and Electronics University of Science and Technology of ChinaHefei 230026China Department of Modern Physics University of Science and Technology of ChinaHefei 230026China School of Physics Peking UniversityBeijing 100871Ch
The proton-proton(pp)fusion chain dominates the neutrino production in the *** uncertainty of the predicted pp neutrino flux is at the sub-percent level,whereas that of the best measurement is O(10%).In this study,for... 详细信息
来源: 评论
Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud Semantic Segmentation Via Decoupling Optimization
SSRN
收藏 引用
SSRN 2023年
作者: Li, Mengtian Lin, Shaohui Wang, Zihan Shen, Yunhang Zhang, Baochang Ma, Lizhuang Visual Media Intelligent Processing Research Group Department of Film and Television Engineering Shanghai University Shanghai200072 China School of Computer Science and Technology East China Normal University Shanghai200062 China Key Laboratory of Advanced Theory and Application in Statistics and Data Science Ministry of Education China School of Automation Science and Electrical Engineering Beihang University Beijing100191 China Youtu Lab Tencent China
Semi-supervised learning (SSL), thanks to the significant reduction of data annotation costs, has been an active research topic for large-scale 3D scene understanding. However, the existing SSL-based methods suffer fr... 详细信息
来源: 评论
Filter Pruning for Efficient CNNs via Knowledge-driven Differential Filter Sampler
arXiv
收藏 引用
arXiv 2023年
作者: Lin, Shaohui Huang, Wenxuan Xie, Jiao Zhang, Baochang Shen, Yunhang Yu, Zhou Han, Jungong Doermann, David The School of Computer Science and Technology East China Normal University Shanghai China The Key Laboratory of Advanced Theory and Application in Statistics and Data Science Ministry of Education China The Department of Automation School of Aerospace Engineering Xiamen University Xiamen China The Institute of Artificial Intelligence Beihang University Beijing China Zhongguancun Laboratory Beijing China The Youtu Lab Tencent Shanghai China The School of Statistics East China Normal University Shanghai China The Department of Computer Science University of Sheffield United Kingdom The University at Buffalo BuffaloNY United States
Filter pruning simultaneously accelerates the computation and reduces the memory overhead of CNNs, which can be effectively applied to edge devices and cloud services. In this paper, we propose a novel Knowledge-drive... 详细信息
来源: 评论
Sparse generalized canonical correlation analysis: Distributed alternating iteration based approach
arXiv
收藏 引用
arXiv 2020年
作者: Cai, Jia Lv, Kexin Huo, Junyi Huang, Xiaolin Yang, Jie School of Statistics and Mathematics Guangdong University of Finance & Economics Big Data and Educational Statistics Application Laboratory 21 Chisha Road Guangzhou Guangdong510320 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University MOE Key Laboratory of System Control and Information Processing 800 Dongchuan Road Shanghai200240 China School of Electronics and Computer Science University of Southampton University Road SouthamptonSO17 1BJ United Kingdom
Sparse canonical correlation analysis (CCA) is a useful statistical tool to detect latent information with sparse structures. However, sparse CCA works only for two datasets, i.e., there are only two views or two dist... 详细信息
来源: 评论
Generalized Estimating Equations for Hearing Loss data with Specified Correlation Structures
arXiv
收藏 引用
arXiv 2023年
作者: Wei, Zhuoran Zhu, Hanbing Curhan, Sharon Curhan, Gary Wang, Molin Department of Biostatistics Harvard T.H. Chan School of Public Health BostonMA United States Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE School of Statistics East China Normal University Shanghai China Harvard Medical School BostonMA United States Channing Division of Network Medicine Department of Medicine Brigham and Women’s Hospital BostonMA United States Division of Renal Medicine Department of Medicine Brigham and Women’s Hospital BostonMA United States Department of Epidemiology Harvard T.H. Chan School of Public Health BostonMA United States
Due to the nature of pure-tone audiometry test, hearing loss data often has a complicated correlation structure. Generalized estimating equation (GEE) is commonly used to investigate the association between exposures ... 详细信息
来源: 评论