咨询与建议

限定检索结果

文献类型

  • 331 篇 会议
  • 282 篇 期刊文献

馆藏范围

  • 613 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 405 篇 工学
    • 313 篇 计算机科学与技术...
    • 242 篇 软件工程
    • 88 篇 信息与通信工程
    • 75 篇 控制科学与工程
    • 58 篇 电气工程
    • 53 篇 生物工程
    • 38 篇 光学工程
    • 36 篇 生物医学工程(可授...
    • 24 篇 机械工程
    • 22 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 17 篇 化学工程与技术
    • 17 篇 网络空间安全
    • 11 篇 动力工程及工程热...
    • 10 篇 安全科学与工程
  • 207 篇 理学
    • 120 篇 数学
    • 59 篇 生物学
    • 39 篇 物理学
    • 37 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 18 篇 化学
  • 132 篇 管理学
    • 78 篇 管理科学与工程(可...
    • 61 篇 图书情报与档案管...
    • 29 篇 工商管理
  • 36 篇 医学
    • 29 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
    • 12 篇 公共卫生与预防医...
  • 18 篇 法学
    • 13 篇 社会学
  • 13 篇 经济学
    • 13 篇 应用经济学
  • 4 篇 农学
  • 3 篇 教育学
  • 3 篇 艺术学
  • 1 篇 文学

主题

  • 27 篇 feature extracti...
  • 26 篇 training
  • 25 篇 predictive model...
  • 23 篇 deep learning
  • 20 篇 data models
  • 19 篇 semantics
  • 16 篇 contrastive lear...
  • 16 篇 computational mo...
  • 14 篇 graph neural net...
  • 12 篇 convolution
  • 12 篇 accuracy
  • 11 篇 analytical model...
  • 11 篇 machine learning
  • 10 篇 convergence
  • 9 篇 anomaly detectio...
  • 9 篇 visualization
  • 9 篇 convolutional ne...
  • 8 篇 signal processin...
  • 8 篇 knowledge graph
  • 8 篇 prediction algor...

机构

  • 40 篇 national enginee...
  • 37 篇 key laboratory o...
  • 35 篇 chongqing key la...
  • 24 篇 zhejiang key lab...
  • 24 篇 school of comput...
  • 23 篇 zhejiang univers...
  • 23 篇 college of compu...
  • 22 篇 guangdong provin...
  • 21 篇 engineering rese...
  • 20 篇 xi'an key labora...
  • 18 篇 university of ch...
  • 18 篇 shaanxi key labo...
  • 17 篇 fujian key labor...
  • 15 篇 college of compu...
  • 15 篇 school of comput...
  • 15 篇 school of cyber ...
  • 14 篇 shenzhen institu...
  • 14 篇 alibaba group
  • 14 篇 chongqing key la...
  • 13 篇 key laboratory o...

作者

  • 26 篇 wang guoyin
  • 23 篇 huang qingming
  • 23 篇 shen linlin
  • 21 篇 xu qianqian
  • 19 篇 chen huajun
  • 16 篇 yang zhiyong
  • 14 篇 xia shuyin
  • 13 篇 wang lihui
  • 12 篇 shang mingsheng
  • 12 篇 wang jinbao
  • 12 篇 zhang ningyu
  • 11 篇 xin luo
  • 11 篇 chen yanping
  • 11 篇 wang zhongmin
  • 10 篇 li tianrui
  • 10 篇 mingsheng shang
  • 10 篇 gao can
  • 10 篇 cao xiaochun
  • 10 篇 bao shilong
  • 9 篇 yu zitong

语言

  • 514 篇 英文
  • 89 篇 其他
  • 23 篇 中文
检索条件"机构=MOE Key Laboratory of Big Data Intelligent Computing"
613 条 记 录,以下是1-10 订阅
排序:
Learning Counterfactual Explanation of Graph Neural Networks via Generative Flow Network
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2024年 第9期5卷 4607-4619页
作者: He, Kangjia Liu, Li Zhang, Youmin Wang, Ye Liu, Qun Wang, Guoyin Chongqing University of Posts and Telecommunications Chongqing Key Laboratory of Computational Intelligence Key Laboratory of Big Data Intelligent Computing Chongqing400065 China
Counterfactual subgraphs explain graph neural networks (GNNs) by answering the question: 'How would the prediction change if a certain subgraph were absent in the input instance?' The differentiable proxy adja... 详细信息
来源: 评论
A Novel Competition-Based Coordination Model With Dynamic Feedback for Multi-Robot Systems
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2023年 第10期10卷 2029-2031页
作者: Bo Peng Xuerui Zhang Mingsheng Shang Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing 400714 Chongqing School University of Chinese Academy of SciencesChongqing 400714China Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing 400714China
Dear Editor, Task allocation strategies are important in multi-robot systems and have been intensely investigated by researchers because they are critical in determining the performance of the system. In this letter, ... 详细信息
来源: 评论
Underwater target recognition based on adaptive multi-feature fusion network
收藏 引用
Multimedia Tools and Applications 2025年 第10期84卷 7297-7317页
作者: Pan, Xiaoying Sun, Jia Feng, TianHao Lei, MingZhu Wang, Hao Zhang, WuXia Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi’an710121 China Xi’an Key Laboratory of Big Data and Intelligent Computing Xi’an710121 China School of Computer Science and Technology Xi’an University of Post & Telecommunications Xi’an710121 China
Due to the complexity of the underwater environment, underwater acoustic target recognition is more challenging than ordinary target recognition, and has become a hot topic in the field of underwater acoustics researc... 详细信息
来源: 评论
A Multi-granularity Graph-based Representation for Image Recognition  4
A Multi-granularity Graph-based Representation for Image Rec...
收藏 引用
4th IEEE International Conference on Power, Electronics and Computer Applications, ICPECA 2024
作者: Lan, Danfeng Dai, Dawei Chongqing University of Posts and Telecommunications Key Laboratory of Big Data Intelligent Computing Chongqing China
Graph neural networks (GNNs) are specially designed to process graph data because of their ability to effectively capture complex structures and relationships within graphs. However, due to the pixel-based nature of i... 详细信息
来源: 评论
Uncertain knowledge graph embedding:an effective method combining multi-relation and multi-path
收藏 引用
Frontiers of Computer Science 2024年 第3期18卷 73-89页
作者: Qi LIU Qinghua ZHANG Fan ZHAO Guoyin WANG Key Laboratory of Tourism Multisource Data Perception and Decision Ministry of Culture and TourismChongqing University of Posts and TelecommunicationsChongqing 400065China Chongqing Key Laboratory of Computational Intelligence Chongqing University of Posts and TelecommunicationsChongqing 400065China Chongqing Key Laboratory of Big Data Intelligent Computing Chongqing University of Posts and TelecommunicationsChongqing 400065China
Uncertain Knowledge Graphs(UKGs)are used to characterize the inherent uncertainty of knowledge and have a richer semantic structure than deterministic knowledge *** research on the embedding of UKG has only recently b... 详细信息
来源: 评论
Sketch Teaching System Based on Human-Computer Hybrid Enhanced Intelligence  18th
Sketch Teaching System Based on Human-Computer Hybrid Enhan...
收藏 引用
18th International Conference on Computer Science and Education, ICCSE 2023
作者: Fu, Shiyu Dai, Dawei Yang, Le Liao, Zhenchun Wang, Guoyin Key Laboratory of Big Data Intelligent Computing Chongqing University of Posts and Telecommunications Chongqing400065 China
Sketch education is an essential component of arts education. In recent years, with the development of society, the demand for sketch courses has been steadily increasing. However, the existing teaching resources are ... 详细信息
来源: 评论
WISE: Rethinking the Knowledge Memory for Lifelong Model Editing of Large Language Models  38
WISE: Rethinking the Knowledge Memory for Lifelong Model Edi...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Wang, Peng Li, Zexi Zhang, Ningyu Xu, Ziwen Yao, Yunzhi Jiang, Yong Xie, Pengjun Huang, Fei Chen, Huajun Zhejiang University China Alibaba Group China Zhejiang Key Laboratory of Big Data Intelligent Computing China
Large language models (LLMs) need knowledge updates to meet the ever-growing world facts and correct the hallucinated responses, facilitating the methods of lifelong model editing. Where the updated knowledge resides ...
来源: 评论
IMPRESS: An Importance-Informed Multi-Tier Prefix KV Storage System for Large Language Model Inference  23
IMPRESS: An Importance-Informed Multi-Tier Prefix KV Storage...
收藏 引用
23rd USENIX Conference on File and Storage Technologies, FAST 2025
作者: Chen, Weijian He, Shuibing Qu, Haoyang Zhang, Ruidong Yang, Siling Chen, Ping Zheng, Yi Huai, Baoxing Chen, Gang The State Key Laboratory of Blockchain and Data Security Zhejiang University China Institute of Blockchain and Data Security China Zhejiang Key Laboratory of Big Data Intelligent Computing China Huawei Cloud China
Modern advanced large language model (LLM) applications often prepend long contexts before user queries to improve model output quality. These contexts frequently repeat, either partially or fully, across multiple que...
来源: 评论
T-Assess: An Efficient data Quality Assessment System Tailored for Trajectory data  51st
T-Assess: An Efficient Data Quality Assessment System Tailor...
收藏 引用
51st International Conference on Very Large data Bases, VLDB 2025
作者: Zhu, Junhao Wang, Tao Hu, Danlei Fang, Ziquan Chen, Lu Gao, Yunjun Li, Tianyi Jensen, Christian S. Zhejiang University China Zhejiang University Zhejiang Key Laboratory of Big Data Intelligent Computing China Aalborg University Denmark
With the widespread use of GPS-enabled devices and services, trajectory data fuels services in a variety of fields, such as transportation and smart cities. However, trajectory data often contains errors stemming from... 详细信息
来源: 评论
LEAP: A Low-cost Spark SQL Query Optimizer using Pairwise Comparison  51st
LEAP: A Low-cost Spark SQL Query Optimizer using Pairwise Co...
收藏 引用
51st International Conference on Very Large data Bases, VLDB 2025
作者: Ye, Junhao Li, Jiahui Chen, Lu Mao, Yuren Gao, Yunjun Li, Tianyi Zhejiang University China Zhejiang University Zhejiang Key Laboratory of Big Data Intelligent Computing China Aalborg University Denmark
Selecting a good execution plan can significantly improve the query efficiency of Spark SQL. Several machine learning-based techniques have been proposed to select good execution plans for DBMS, but none of them perfo... 详细信息
来源: 评论