咨询与建议

限定检索结果

文献类型

  • 331 篇 会议
  • 282 篇 期刊文献

馆藏范围

  • 613 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 405 篇 工学
    • 313 篇 计算机科学与技术...
    • 242 篇 软件工程
    • 88 篇 信息与通信工程
    • 75 篇 控制科学与工程
    • 58 篇 电气工程
    • 53 篇 生物工程
    • 38 篇 光学工程
    • 36 篇 生物医学工程(可授...
    • 24 篇 机械工程
    • 22 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 17 篇 化学工程与技术
    • 17 篇 网络空间安全
    • 11 篇 动力工程及工程热...
    • 10 篇 安全科学与工程
  • 207 篇 理学
    • 120 篇 数学
    • 59 篇 生物学
    • 39 篇 物理学
    • 37 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 18 篇 化学
  • 132 篇 管理学
    • 78 篇 管理科学与工程(可...
    • 61 篇 图书情报与档案管...
    • 29 篇 工商管理
  • 36 篇 医学
    • 29 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
    • 12 篇 公共卫生与预防医...
  • 18 篇 法学
    • 13 篇 社会学
  • 13 篇 经济学
    • 13 篇 应用经济学
  • 4 篇 农学
  • 3 篇 教育学
  • 3 篇 艺术学
  • 1 篇 文学

主题

  • 27 篇 feature extracti...
  • 26 篇 training
  • 25 篇 predictive model...
  • 23 篇 deep learning
  • 20 篇 data models
  • 19 篇 semantics
  • 16 篇 contrastive lear...
  • 16 篇 computational mo...
  • 14 篇 graph neural net...
  • 12 篇 convolution
  • 12 篇 accuracy
  • 11 篇 analytical model...
  • 11 篇 machine learning
  • 10 篇 convergence
  • 9 篇 anomaly detectio...
  • 9 篇 visualization
  • 9 篇 convolutional ne...
  • 8 篇 signal processin...
  • 8 篇 knowledge graph
  • 8 篇 prediction algor...

机构

  • 40 篇 national enginee...
  • 37 篇 key laboratory o...
  • 35 篇 chongqing key la...
  • 24 篇 zhejiang key lab...
  • 24 篇 school of comput...
  • 23 篇 zhejiang univers...
  • 23 篇 college of compu...
  • 22 篇 guangdong provin...
  • 21 篇 engineering rese...
  • 20 篇 xi'an key labora...
  • 18 篇 university of ch...
  • 18 篇 shaanxi key labo...
  • 17 篇 fujian key labor...
  • 15 篇 college of compu...
  • 15 篇 school of comput...
  • 15 篇 school of cyber ...
  • 14 篇 shenzhen institu...
  • 14 篇 alibaba group
  • 14 篇 chongqing key la...
  • 13 篇 key laboratory o...

作者

  • 26 篇 wang guoyin
  • 23 篇 huang qingming
  • 23 篇 shen linlin
  • 21 篇 xu qianqian
  • 19 篇 chen huajun
  • 16 篇 yang zhiyong
  • 14 篇 xia shuyin
  • 13 篇 wang lihui
  • 12 篇 shang mingsheng
  • 12 篇 wang jinbao
  • 12 篇 zhang ningyu
  • 11 篇 xin luo
  • 11 篇 chen yanping
  • 11 篇 wang zhongmin
  • 10 篇 li tianrui
  • 10 篇 mingsheng shang
  • 10 篇 gao can
  • 10 篇 cao xiaochun
  • 10 篇 bao shilong
  • 9 篇 yu zitong

语言

  • 514 篇 英文
  • 89 篇 其他
  • 23 篇 中文
检索条件"机构=MOE Key Laboratory of Big Data Intelligent Computing"
613 条 记 录,以下是81-90 订阅
排序:
BENCHMARKING AGENTIC WORKFLOW GENERATION
arXiv
收藏 引用
arXiv 2024年
作者: Qiao, Shuofei Fang, Runnan Qiu, Zhisong Wang, Xiaobin Zhang, Ningyu Jiang, Yong Xie, Pengjun Huang, Fei Chen, Huajun Zhejiang University China Alibaba Group China Zhejiang Key Laboratory of Big Data Intelligent Computing China
Large Language Models (LLMs), with their exceptional ability to handle a wide range of tasks, have driven significant advancements in tackling reasoning and planning tasks, wherein decomposing complex problems into ex... 详细信息
来源: 评论
Prediction of remaining useful life of lithium batteries based on Decayable-LSTM
Prediction of remaining useful life of lithium batteries bas...
收藏 引用
Chinese Control and Decision Conference, CCDC
作者: Penghua Li Dailin Gao Key Laboratory of Intelligent Computing for Big Data College of Automation Chongqing University of Posts and Telecommunications Chongqing China
data-driven techniques have been extensively employed in practical applications involving lithium-ion batteries. However, the accuracy of these methods heavily relies on the quality and quantity of the collected data.... 详细信息
来源: 评论
Robust Latent Factor Analysis for Precise Representation of High-Dimensional and Sparse data
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2021年 第4期8卷 796-805页
作者: Di Wu Xin Luo the Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing 400714 the Chongqing School University of Chinese Academy of SciencesChongqing 400714China
High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor *** they contain rich information,how to accurately represe... 详细信息
来源: 评论
WISE: Rethinking the Knowledge Memory for Lifelong Model Editing of Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Peng Li, Zexi Zhang, Ningyu Xu, Ziwen Yao, Yunzhi Jiang, Yong Xie, Pengjun Huang, Fei Chen, Huajun Zhejiang University China Alibaba Group China Zhejiang Key Laboratory of Big Data Intelligent Computing China
Large language models (LLMs) need knowledge updates to meet the ever-growing world facts and correct the hallucinated responses, facilitating the methods of lifelong model editing. Where the updated knowledge resides ... 详细信息
来源: 评论
A Model robustness optimization method based on adversarial sample detection  5
A Model robustness optimization method based on adversarial ...
收藏 引用
5th International Conference on Artificial Intelligence and Pattern Recognition, AIPR 2022
作者: Sun, Jiaze Long, Siyuan Ma, Xianyan Tang, Yanmei Xi'an University of Posts and Telecommunications Shaanxi Provincial Key Laboratory of Network Data Analysis and Intelligent Processing Xi'an Key Laboratory of Big Data and Intelligent Computing Xi'an710121 China Xi'an University of Posts and Telecommunications Xi'an710121 China
Deep neural networks are extremely vulnerable due to the existence of adversarial samples. It is a challenging problem to optimize the robustness of the model to protect deep neural networks from the threat of adversa... 详细信息
来源: 评论
OmniThink: Expanding Knowledge Boundaries in Machine Writing through Thinking
arXiv
收藏 引用
arXiv 2025年
作者: Xi, Zekun Yin, Wenbiao Fang, Jizhan Wu, Jialong Fang, Runnan Zhang, Ningyu Jiang, Yong Xie, Pengjun Huang, Fei Chen, Huajun Zhejiang University China Tongyi Lab Alibaba Group China Zhejiang Key Laboratory of Big Data Intelligent Computing China
Machine writing with large language models often relies on retrieval-augmented generation. However, these approaches remain confined within the boundaries of the model’s predefined scope, limiting the generation of c... 详细信息
来源: 评论
State-of-Charge Estimation of Lithium Battery Based on Deep Residual Shrinkage Networks and a Variant Long Short Term Memory Neural Network
State-of-Charge Estimation of Lithium Battery Based on Deep ...
收藏 引用
第35届中国控制与决策会议
作者: Penghua Li Yihui Zhang Key Laboratory of Intelligent Computing for Big Data College of Automation Chongqing University of Posts and Telecommunications
Accurate state-of-charge(SOC) estimation,which is critical to ensuring the safe and reliable operation of battery management systems in electric vehicles,is still a challenging task due to sophisticated battery dynami... 详细信息
来源: 评论
A Self-decoupled Interpretable Prediction Framework for Highly-Variable Cloud Workloads  28th
A Self-decoupled Interpretable Prediction Framework for Hig...
收藏 引用
28th International Conference on database Systems for Advanced Applications, DASFAA 2023
作者: Wang, Bingchao Shi, Xiaoyu Shang, Mingsheng Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing400714 China Chongqing School University of Chinese Academy of Sciences Chongqing400714 China Chongqing Key Laboratory of Computational Intelligence Chongqing University of Posts and Telecommunications Chongqing400065 China
Cloud workloads prediction plays a crucial role in the various tasks of cloud computing, such as resource scheduling, performance optimization, cost management, etc. However, current time series prediction methods suf... 详细信息
来源: 评论
Blockchain-Based Multi-Cloud data Storage System Disaster Recovery
Blockchain-Based Multi-Cloud Data Storage System Disaster Re...
收藏 引用
2023 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2023
作者: Wang, Feiyu Zhou, Jian-Tao College of Computer Science Inner Mongolia University Inner Mongolia Hohhot China Engineering Research Center of Ecological Big Data Ministry of Education Natl. Loc. Jt. Eng. Research Center of Intelligent Information Processing Technology for Mongolian Inner Mongolia Engineering Laboratory for Cloud Computing and Service Software Inner Mongolia Key Laboratory of Social Computing and Data Processing Inner Mongolia Engineering Laboratory for Big Data Analysis Technology China
Cloud storage services have been used by most businesses and individual users. However, data loss, service interruptions and cyber attacks often lead to cloud storage services not being provided properly, and these in...
来源: 评论
Efficient QoS data Prediction Based on Tensor Kernel Paradigm-Tensor Decomposition
Efficient QoS Data Prediction Based on Tensor Kernel Paradig...
收藏 引用
International Conference on Networking and Network Applications (NaNA)
作者: Hong Xia Jing Xu Qingyi Dong Hui Jia Yanping Chen Xi’an Key Laboratory of Big Data and Intelligent Computing Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing School of Computer Science and Technology Xi’an University of Posts and Telecommunications Xi’an Shaanxi China
In the Mobile Edge computing (MEC) environment, the prediction efficiency is low when user recommendation is based on Quality of Service (QoS) data due to network environment and other factors. Traditional methods use... 详细信息
来源: 评论