咨询与建议

限定检索结果

文献类型

  • 372 篇 会议
  • 356 篇 期刊文献

馆藏范围

  • 728 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 486 篇 工学
    • 292 篇 计算机科学与技术...
    • 261 篇 软件工程
    • 92 篇 控制科学与工程
    • 84 篇 生物工程
    • 73 篇 信息与通信工程
    • 70 篇 电气工程
    • 70 篇 生物医学工程(可授...
    • 59 篇 机械工程
    • 50 篇 光学工程
    • 46 篇 电子科学与技术(可...
    • 28 篇 化学工程与技术
    • 25 篇 仪器科学与技术
    • 18 篇 力学(可授工学、理...
    • 17 篇 动力工程及工程热...
    • 14 篇 材料科学与工程(可...
    • 14 篇 航空宇航科学与技...
    • 13 篇 交通运输工程
    • 13 篇 船舶与海洋工程
  • 297 篇 理学
    • 174 篇 数学
    • 91 篇 生物学
    • 76 篇 物理学
    • 60 篇 统计学(可授理学、...
    • 42 篇 系统科学
    • 26 篇 化学
  • 106 篇 管理学
    • 68 篇 管理科学与工程(可...
    • 37 篇 图书情报与档案管...
    • 19 篇 工商管理
  • 36 篇 医学
    • 33 篇 临床医学
    • 27 篇 基础医学(可授医学...
    • 24 篇 药学(可授医学、理...
  • 10 篇 经济学
  • 9 篇 法学
  • 7 篇 农学
  • 3 篇 教育学
  • 2 篇 军事学
  • 1 篇 哲学
  • 1 篇 文学

主题

  • 18 篇 feature extracti...
  • 18 篇 machine learning
  • 17 篇 training
  • 16 篇 image segmentati...
  • 16 篇 image processing
  • 13 篇 semantics
  • 12 篇 pattern recognit...
  • 11 篇 electroencephalo...
  • 10 篇 object detection
  • 10 篇 deep neural netw...
  • 10 篇 convolution
  • 9 篇 laboratories
  • 9 篇 intelligent cont...
  • 8 篇 reinforcement le...
  • 8 篇 deep learning
  • 8 篇 neural networks
  • 8 篇 computational mo...
  • 8 篇 hardware
  • 8 篇 artificial intel...
  • 7 篇 motion planning

机构

  • 79 篇 school of artifi...
  • 69 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 32 篇 shenzhen huazhon...
  • 27 篇 key laboratory o...
  • 25 篇 alibaba group
  • 24 篇 key laboratory o...
  • 20 篇 ministry of educ...
  • 19 篇 key laboratory o...
  • 12 篇 school of artifi...
  • 12 篇 huazhong univers...
  • 12 篇 key laboratory o...
  • 12 篇 key laboratory o...
  • 11 篇 the school of ar...
  • 11 篇 the department o...
  • 10 篇 moe key lab of a...
  • 10 篇 the shanghai art...
  • 9 篇 key laboratory o...
  • 9 篇 key laboratory o...
  • 9 篇 institute for pa...

作者

  • 61 篇 wu dongrui
  • 55 篇 sang nong
  • 47 篇 gao changxin
  • 27 篇 cao zhiguo
  • 26 篇 zeng zhigang
  • 24 篇 wang xiang
  • 23 篇 hai-tao zhang
  • 23 篇 ding mingyue
  • 22 篇 zhang shiwei
  • 19 篇 zhigang zeng
  • 18 篇 huang jian
  • 18 篇 liu jian
  • 17 篇 qing zhiwu
  • 17 篇 jian huang
  • 16 篇 pan linqiang
  • 16 篇 mingyue ding
  • 15 篇 wang xiaoping
  • 14 篇 zhang hai-tao
  • 14 篇 dongrui wu
  • 13 篇 zhiguo cao

语言

  • 682 篇 英文
  • 31 篇 其他
  • 15 篇 中文
检索条件"机构=MOE Key Laboratory of Image Processing and Intelligence Control"
728 条 记 录,以下是521-530 订阅
排序:
Pool-Based Unsupervised Active Learning for Regression Using Iterative Representativeness-Diversity Maximization (iRDM)
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Ziang Jiang, Xue Luo, Hanbin Fang, Weili Liu, Jiajing Wu, Dongrui Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology China School of Civil Engineering and Mechanics Huazhong University of Science and Technology China
Active learning (AL) selects the most beneficial unlabeled samples to label, and hence a better machine learning model can be trained from the same number of labeled samples. Most existing active learning for regressi... 详细信息
来源: 评论
Closer to Pre-trained Network Transfer Better
Closer to Pre-trained Network Transfer Better
收藏 引用
IEEE Joint International Information Technology and Artificial intelligence Conference (ITAIC)
作者: Siyu Chen Wei Li School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan People’s Republic of China Image Processing and Intelligent Control Key Laboratory Education Ministry of China Wuhan People’s Republic of China
In recent years, Deep Neural Network (DNN) has been widely used in the domain of computer vision, but its further development is restricted because of the lack of train samples. Fine-tuning is one of deep transfer lea... 详细信息
来源: 评论
Synaptic learning with augmented spikes
arXiv
收藏 引用
arXiv 2020年
作者: Yu, Qiang Song, Shiming Ma, Chenxiang Pan, Linqiang Tan, Kay Chen Tianjin Key Laboratory of Cognitive Computing and Application College of Intelligence and Computing Tianjin University Tianjin China Key Laboratory of Image Information Processing and Intelligent Control Institute of Artificial Intelligence School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China The Department of Computer Science City University of Hong Kong Hong Kong
Traditional neuron models use analog values for information representation and computation, while all-or-nothing spikes are employed in the spiking ones. With a more brain-like processing paradigm, spiking neurons are... 详细信息
来源: 评论
Deep Rank-Consistent Pyramid Model for Enhanced Crowd Counting
arXiv
收藏 引用
arXiv 2022年
作者: Gao, Jiaqi Huang, Zhizhong Lei, Yiming Shan, Hongming Wang, James Z. Wang, Fei-Yue Zhang, Junping The Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University Shanghai200433 China The Institute of Science and Technology for Brain-inspired Intelligence MOE Frontiers Center for Brain Science Fudan University Shanghai200433 China The Shanghai Center for Brain Science and Brain-Inspired Technology Shanghai201210 China The College of Information Sciences and Technology The Pennsylvania State University University ParkPA16802 United States The State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China The Institute of Systems Engineering Macau University of Science and Technology China Qingdao Academy of Intelligent Industries Qingdao266109 China
Most conventional crowd counting methods utilize a fully-supervised learning framework to establish a mapping between scene images and crowd density maps. They usually rely on a large quantity of costly and time-inten... 详细信息
来源: 评论
A survey on negative transfer
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Wen Deng, Lingfei Zhang, Lei Wu, Dongrui the Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China the School of Microelectronics and Communication Engineering Chongqing University Chongqing400044 China
—Transfer learning (TL) utilizes data or knowledge from one or more source domains to facilitate the learning in a target domain. It is particularly useful when the target domain has very few or no labeled data, due ... 详细信息
来源: 评论
A visual kinematics calibration method for manipulator based on nonlinear optimization
arXiv
收藏 引用
arXiv 2020年
作者: Peng, Gang Wang, Zhihao Yang, Jin Li, Xinde Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China IEEE senior member School of Automation South East University Nanjing China
The traditional kinematic calibration method for manipulators requires precise three-dimensional measuring instruments to measure the end pose, which is not only expensive due to the high cost of the measuring instrum... 详细信息
来源: 评论
Observer-Based Robust Containment control of Multi-agent Systems With Input Saturation
Observer-Based Robust Containment Control of Multi-agent Sys...
收藏 引用
第三十九届中国控制会议
作者: Juan Qian Xiaoling Wang Guo-Ping Jiang Housheng Su College of Automation and College of Artificial Intelligence Nanjing University of Posts and Telecommunicationsand Jiangsu Engineering Lab for IOT Intelligent Robots(IOTRobot) School of Artificial Intelligence and Automation Image Processing and Intelligent Control Key Laboratory of Education Ministry of China Huazhong University of Science and Technology
In this paper, the robust containment control problem of the leader-following multi-agent systems with input saturation and input additive disturbance is addressed, where the followers can be informed by multiple lead... 详细信息
来源: 评论
Parity space-based model mismatch detection for linear discrete time-invariant systems with unknown disturbances
Parity space-based model mismatch detection for linear discr...
收藏 引用
第三十九届中国控制会议
作者: Yi Tang Dan Ling Hong Zhang Yanewei Wang Ying Zheng the Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and AutomationHuazhong University of Science and Technology School of Electrical and Information Engineering Zhengzhou University of Light Industry School of Mechanical & Electrical Engineering Wuhan Institute of Technology
Model mismatch is one of the main factors of control performance degradation. In this paper, a new model mismatch detection approach with parity space-based methods is proposed for linear discrete time-invariant(LDTI... 详细信息
来源: 评论
Adversarial refinement network for human motion prediction
arXiv
收藏 引用
arXiv 2020年
作者: Chao, Xianjin Bin, Yanrui Chu, Wenqing Cao, Xuan Ge, Yanhao Wang, Chengjie Li, Jilin Huang, Feiyue Leung, Howard City University of Hong Kong Hong Kong Hong Kong Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Tencent Youtu Lab Shanghai China
Human motion prediction aims to predict future 3D skeletal sequences by giving a limited human motion as inputs. Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough... 详细信息
来源: 评论
Parameter training methods for convolutional neural networks with adaptive adjustment method based on Caputo fractional-order differences
收藏 引用
Chaos, Solitons & Fractals 2025年 199卷
作者: Haiming Zhao Honggang Yang Jiejie Chen Ping Jiang Zhigang Zeng School of Computer and Information Engineering Hubei Normal University Huangshi 435000 China School of Automation Wuhan University of Technology Wuhan 430000 China School of Computer Hubei Polytechnic University Huangshi 435000 China School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan 430000 China Key Laboratory of Image Information Processing and Intelligent Control Ministry of Education of China Wuhan 430000 China
As deep learning technologies continue to permeate various sectors, optimization algorithms have become increasingly crucial in neural network training. This paper introduces two adaptive momentum algorithms based on ...
来源: 评论