咨询与建议

限定检索结果

文献类型

  • 73 篇 期刊文献
  • 42 篇 会议

馆藏范围

  • 115 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 81 篇 工学
    • 62 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 16 篇 信息与通信工程
    • 11 篇 生物工程
    • 10 篇 光学工程
    • 10 篇 控制科学与工程
    • 7 篇 电气工程
    • 7 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 4 篇 机械工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 建筑学
    • 3 篇 网络空间安全
    • 2 篇 仪器科学与技术
    • 2 篇 冶金工程
  • 45 篇 理学
    • 28 篇 数学
    • 15 篇 生物学
    • 10 篇 统计学(可授理学、...
    • 8 篇 化学
    • 6 篇 物理学
    • 4 篇 系统科学
    • 1 篇 地球物理学
  • 27 篇 管理学
    • 21 篇 管理科学与工程(可...
    • 6 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 5 篇 农学
  • 5 篇 医学
    • 4 篇 基础医学(可授医学...
    • 3 篇 临床医学
    • 2 篇 药学(可授医学、理...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 6 篇 image segmentati...
  • 4 篇 semantics
  • 4 篇 signal processin...
  • 3 篇 deep neural netw...
  • 3 篇 signal processin...
  • 3 篇 cameras
  • 3 篇 laboratories
  • 3 篇 feature extracti...
  • 3 篇 training
  • 3 篇 multiobjective o...
  • 2 篇 image fusion
  • 2 篇 object detection
  • 2 篇 support vector m...
  • 2 篇 deep learning
  • 2 篇 computer archite...
  • 2 篇 pixel
  • 2 篇 network topology
  • 2 篇 large dataset
  • 2 篇 face recognition
  • 2 篇 convolution

机构

  • 11 篇 school of artifi...
  • 9 篇 school of comput...
  • 7 篇 key laboratory o...
  • 6 篇 laboratory of in...
  • 6 篇 institute of art...
  • 6 篇 artificial intel...
  • 5 篇 the key laborato...
  • 5 篇 key laboratory o...
  • 5 篇 province key lab...
  • 4 篇 key laboratory o...
  • 4 篇 key laboratory o...
  • 4 篇 information mate...
  • 4 篇 information mate...
  • 3 篇 information mate...
  • 3 篇 key laboratory o...
  • 3 篇 moe key laborato...
  • 3 篇 the key laborato...
  • 3 篇 national key lab...
  • 3 篇 college of compu...
  • 3 篇 institutes of ph...

作者

  • 13 篇 li chenglong
  • 13 篇 zhang xingyi
  • 11 篇 tang jin
  • 9 篇 tian ye
  • 8 篇 yang shangshang
  • 6 篇 chen lili
  • 6 篇 guo hongjun
  • 6 篇 luo bin
  • 6 篇 su yansen
  • 5 篇 zhang ling
  • 5 篇 xingyi zhang
  • 5 篇 jin yaochu
  • 4 篇 ye tian
  • 4 篇 zhao liquan
  • 4 篇 huang zhixiang
  • 4 篇 liu zhengyi
  • 4 篇 liang tao
  • 4 篇 zhang limiao
  • 4 篇 tao liang
  • 4 篇 wang linbo

语言

  • 104 篇 英文
  • 9 篇 其他
  • 2 篇 中文
检索条件"机构=MOE Key Laboratory of Intelligence Computing and Signal Processing"
115 条 记 录,以下是21-30 订阅
排序:
A Negative Survey based Method for Preserving Topology Privacy in Social Networks  4
A Negative Survey based Method for Preserving Topology Priva...
收藏 引用
4th International Conference on Data intelligence and Security, ICDIS 2022
作者: Jiang, Hao Liao, Yuerong Yu, Qianwei Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Artificial Intelligence Anhui University Hefei230601 China The Second Affiliated Hospital of Anhui Medical University Department of Gastroenterology Hefei230601 China
Currently, the rapid popularity of social network platforms makes the real social relations in social networks face the potential risk of disclosure. Therefore, most users may refuse to provide their social relations ... 详细信息
来源: 评论
DMNER: Biomedical Named Entity Recognition by Detection and Matching
DMNER: Biomedical Named Entity Recognition by Detection and ...
收藏 引用
2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
作者: Bian, Junyi Jiang, Rongze Zhai, Weiqi Huang, Tianyang Huang, Xiaodi Zhou, Hong Zhu, Shanfeng Fudan University School of Computer Science Shanghai China Fudan University Institute of Science and Technology for Brain-Inspired Intelligence Shanghai China Charles Sturt University School of Computing Mathematics and Engineering Nsw Australia Atypon Systems Llc United Kingdom Zhangjiang Fudan International Innovation Center Fudan University Institute of Science and Technology for Brain-Inspired Intelligence Moe Frontiers Center for Brain Science Shanghai Key Lab of Intelligent Information Processing Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence Shanghai China
Biomedical Named Entity Recognition (NER) is a crucial task in extracting information from biomedical texts. However, the diversity of professional terminology, semantic complexity, and the widespread presence of syno... 详细信息
来源: 评论
Evolutionary Multi-Objective Neural Architecture Search for Generalized Cognitive Diagnosis Models
Evolutionary Multi-Objective Neural Architecture Search for ...
收藏 引用
Data-driven Optimization of Complex Systems (DOCS), International Conference on
作者: Shangshang Yang Cheng Zhen Ye Tian Haiping Ma Yuanchao Liu Panpan Zhang Xingyi Zhang Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Artificial Intelligence Anhui University Hefei China Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education Institutes of Physical Science and Information Technology Anhui University Hefei China State Key Laboratory of Synthetical Automation for Process Industries Northeastern University Shenyang China
Cognitive diagnosis models (CDMs) with high generalization are essential for intelligent education systems to reveal students' knowledge states in multiple datasets. However, existing CDMs' architectures are d...
来源: 评论
Black⁃box adversarial attacks with imperceptible fake user profiles for recommender systems
收藏 引用
南京大学学报(自然科学版) 2024年 第6期60卷 881-899页
作者: Qian Fulan Liu Jinggang Chen Hai Chen Wenbin Zhao Shu Zhang Yanping Artificial Intelligence Institute Anhui UniversityHefei230601China Key Laboratory of Intelligent Computing and Signal Processing Ministry of EducationAnhui UniversityHefei230601China Information Materials and Intelligent Sensing Laboratory of Anhui Province Anhui UniversityHefei230601China
Attackers inject the designed adversarial sample into the target recommendation system to achieve illegal goals,seriously affecting the security and reliability of the recommendation *** is difficult for attackers to ... 详细信息
来源: 评论
SSFam: Scribble Supervised Salient Object Detection Family
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Zhengyi Deng, Sheng Wang, Xinrui Wang, Linbo Fang, Xianyong Tang, Bin Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Anhui University Hefei China School of Artificial Intelligence and Big Data Hefei University Hefei China
Scribble supervised salient object detection (SSSOD) constructs segmentation ability of attractive objects from surroundings under the supervision of sparse scribble labels. For the better segmentation, depth and ther... 详细信息
来源: 评论
MEFFGRN: Matrix enhancement and feature fusion-based method for reconstructing the gene regulatory network of epithelioma papulosum cyprini cells by spring viremia of carp virus infection
收藏 引用
Computers in Biology and Medicine 2024年 179卷 108835-108835页
作者: Wei, Pi-Jing Bao, Jin-Jin Gao, Zhen Tan, Jing-Yun Cao, Rui-Fen Su, Yansen Zheng, Chun-Hou Deng, Li Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education Institutes of Physical Science and Information Technology Anhui University 111 Jiulong Road HefeiAnhui230601 China Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education School of Computer Science and Technology Anhui University 111 Jiulong Road HefeiAnhui230601 China Shenzhen Key Laboratory of Microbial Genetic Engineering College of Life Sciences and Oceanology Shenzhen University Guangdong Shenzhen518055 China School of Artificial Intelligence Anhui University 111 Jiulong Road HefeiAnhui230601 China
Gene regulatory networks (GRNs) are crucial for understanding organismal molecular mechanisms and processes. Construction of GRN in the epithelioma papulosum cyprini (EPC) cells of cyprinid fish by spring viremia of c... 详细信息
来源: 评论
SwinNet: Swin Transformer Drives Edge-Aware RGB-D and RGB-T Salient Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Zhengyi Tan, Yacheng He, Qian Xiao, Yun Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Anhui University Hefei China Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Artificial Intelligence Anhui University Hefei China
Convolutional neural networks (CNNs) are good at extracting contexture features within certain receptive fields, while transformers can model the global long-range dependency features. By absorbing the advantage of tr... 详细信息
来源: 评论
Learning Analysis of Kernel Ridgeless Regression with Asymmetric Kernel Learning
arXiv
收藏 引用
arXiv 2024年
作者: He, Fan He, Mingzhen Shi, Lei Huang, Xiaolin Suykens, Johan A.K. STADIUS Center for Dynamical Systems Signal Processing and Data Analytics KU Leuven Leuven Belgium MOE Key Laboratory of System Control and Information Processing Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Shanghai Key Laboratory for Contemporary Applied Mathematics School of Mathematical Sciences Fudan University Shanghai200433 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China MOE Key Laboratory of System Control and Information Processing Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai200240 China
Ridgeless regression has garnered attention among researchers, particularly in light of the "Benign Overfitting" phenomenon, where models interpolating noisy samples demonstrate robust generalization. Howeve... 详细信息
来源: 评论
Transformer RGBT Tracking with Spatio-Temporal Multimodal Tokens
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Dengdi Pan, Yajie Lu, Andong Li, Chenglong Luo, Bin The Key Laboratory of Intelligent Computing & Signal Processing Ministry of Education School of Artificial Intelligence Anhui University Hefei230601 China Institute of Artificial Intelligence Hefei Comprehensive National Science Center Hefei230026 China The Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University Hefei230601 China
Many RGBT tracking researches primarily focus on modal fusion design, while overlooking the effective handling of target appearance changes. While some approaches have introduced historical frames or fuse and replace ... 详细信息
来源: 评论
HRTransNet: HRFormer-Driven Two-Modality Salient Object Detection
arXiv
收藏 引用
arXiv 2023年
作者: Tang, Bin Liu, Zhengyi Tan, Yacheng He, Qian School of Artificial Intelligence and Big Data Hefei University Hefei China Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Anhui University Hefei China
The High-Resolution Transformer (HRFormer) can maintain high-resolution representation and share global receptive fields. It is friendly towards salient object detection (SOD) in which the input and output have the sa... 详细信息
来源: 评论