We reported an approach to reconstruct the complex phase morphology of impact polypropylene copolymer (IPC) with core-shell dispersed particles and to optimize its toughness in approximate shear condition. The molte...
详细信息
We reported an approach to reconstruct the complex phase morphology of impact polypropylene copolymer (IPC) with core-shell dispersed particles and to optimize its toughness in approximate shear condition. The molten-state annealing results indicate that the phase structure with core-shell dispersed particles is unstable and could be completely destroyed by static annealing, resulting in the degradation of impact strength. By using a co-rotating twin screw extruder, we found that the dispersed particle with core-shell structure could be rebuilt in appropriate condition with the recovery of excellent impact strength due to both the huge interfacial tension during solidification and the great difference in viscosity of components. Results reveal that almost all the extruded IPCs show the impact strength 60%-90% higher than that of annealed IPCs at room temperature. And the twice-extruded IPC shows the highest impact strength, 446% higher than that of IPC annealed for 30 min. As for low temperature tests, the impact strength of extruded IPCs also increases by 33%-58%. According to adjusting the processing conditions including extrusion speed, extrusion frequency and temperature, an optimization of toughness was well established.
A series of ternary blends of polypropylene/ethylene-propylene random copolymer/ethylene-propylene segmented copolymer(HPP/EPR/Eb P) whose microstructures are similar to those of impact polypropylene copolymer(IPC...
详细信息
A series of ternary blends of polypropylene/ethylene-propylene random copolymer/ethylene-propylene segmented copolymer(HPP/EPR/Eb P) whose microstructures are similar to those of impact polypropylene copolymer(IPC) were prepared in order to systematically investigate the effects of composition on microstructure and crystallization behavior of IPC. The observation of primary phase morphology reveals that the dispersed phase with core-shell structure could be rebuilt in certain composition and excessive EPR leads to a bicontinuous phase structure in ternary blends. After undergoing same quiescent crystallization including isothermal and non-isothermal crystallization, these blend samples exhibit special composition-dependent melting behavior, i.e., the melting point increases markedly with the increase of EPR content until it turns down at a critical content(about 30 wt%). The crystallization behavior is mainly ascribed to the different nucleation abilities. It is suggested that although the compatibility between EPR and HPP components becomes worse with the increase of EPR content due to the increased interfacial area and the decreased concentration of Eb P, higher EPR content in the blend facilitates to heterogeneous nucleation except for the appearance of obvious bicontinuous phase structure.
To improve the colloidal stability of bovine serum albumin (BSA) nanoparticles (hiPs) in diverse mediums, poly(allylamine hydrochloride) (PAH)/sodium poly(4-styrene sulfonate) (PSS) multilayers and poly(a...
详细信息
To improve the colloidal stability of bovine serum albumin (BSA) nanoparticles (hiPs) in diverse mediums, poly(allylamine hydrochloride) (PAH)/sodium poly(4-styrene sulfonate) (PSS) multilayers and poly(allylamine hydrochloride)-graft-poly(ethylene glycol) (PAH-g-PEG) coating were coated on the surface of BSA NPs. Stabilities of the BSA NPs in diverse mediums with different surfaces were detected by dynamic light scattering (DLS). Multilayers and PAH-g-PEG coated BSA NPs can be well dispersed in various mediums with a narrow polydispersity index (PDI). The BSA NPs with the highest surface density of PEG show the best stability. The multilayers and PAH-g-PEG coating do not deter the pH-dependent loading and release property of BSA NPs. At pH 9, the encapsulation efficiency of doxorubicin reaches almost 99%, and the release rate at pH 5.5 is significantly higher than that at pH 7.4.
Utilizing the hydrolysis and condensation of the methoxysilyl moieties, organic-inorganic hybrid poly(N- isopropylacrylamide-co-acrylamide-co-3-(trimethoxysilyl)propylmethacrylate) P(NIPAM-eo-AM-eo-TMSPMA) micro...
详细信息
Utilizing the hydrolysis and condensation of the methoxysilyl moieties, organic-inorganic hybrid poly(N- isopropylacrylamide-co-acrylamide-co-3-(trimethoxysilyl)propylmethacrylate) P(NIPAM-eo-AM-eo-TMSPMA) microgels were prepared via two different methods. The first method was that the microgels were post-fabricated from the cross- linkable linear P(NIPAM-co-AM-co-TMSPMA) terpolymer aqueous solutions above the lower critical solution temperature (LCST) of the terpolymer. For the second method, the mierogels were directly synthesized by conventional surfactant free emulsion copolymerization of NIPAM, AM, and TMSPMA. The hydrodynamic diameter and stability of the resultant P(NIPAM-co-AM-co-TMSPMA) microgels strongly depend on the pH and temperature of the microgel aqueous solution. The hydrodynamic diameters of the microgels decreased with increasing the measuring temperature. The phase transition temperature of the microgels was found to be around 34℃, which was independent of the initial terpolymer concentration and shifted to lower temperature with increasing the preparation temperature. Increasing the initial amount of AM will enhance the instability of the microgels at high pH values. Moreover, the P(NIPAM-co-AM-eo-TMSPMA) microgels obtained from the linear terpolymer had more homogeneous microstructures as compared with the corresponding NIPAM/AM/TMSPMA microgels prepared by one step emulsion copolymerization as revealed by light scattering measurements.
Recent studies published in Cell have elucidated the collaborative roles of LAG-3 and PD-1 in driving T cell exhaustion,revealing how targeting both immune checkpoints could enhance immune responses[1],[2],[3].Among t...
详细信息
Recent studies published in Cell have elucidated the collaborative roles of LAG-3 and PD-1 in driving T cell exhaustion,revealing how targeting both immune checkpoints could enhance immune responses[1],[2],[3].Among these,two studies were led by Dario ***'s team at the University of Pittsburgh School of Medicine,while the third was conducted by *** Wherry's team at the University of Pennsylvania.
Chirality is one of the most distinctive biochemical signatures of life, and plays crucial roles in maintaining normal functions of living cells or organisms. Pioneering work from another group has demonstrated the de...
详细信息
Chirality is one of the most distinctive biochemical signatures of life, and plays crucial roles in maintaining normal functions of living cells or organisms. Pioneering work from another group has demonstrated the dependency of cell differentiation on the chirality of nano-coated substrates, but the effect of the chiral surface of nanoparticles on stem cell fates has not been investigated. In this study, the influence of molecular chiral poly(acryloyl-L(D)-valine) (L(D)- PAV)-anchored gold nanoparticles (L(D)-PAV-AuNPs) on the differentiation of mesenchymal stem cells (MSCs) was investigated. Though osteogenic differentiation of MSCs was not affected by D-PAV-AuNPs, it was significantly promoted by L-PAV-AuNPs in terms of calcium deposition, alkaline phosphatase (ALP) activity, and expression of collagen type I and osteocalcin (OCN) at both mRNA and protein levels. L-PAV-AuNPs could activate the P38 mitogen-activated protein kinase (MAPK) pathway, and may exert mechanical stress on MSCs because of high amounts of internalization. These results provide new insights on surface chirality at the nanoscale as a direct regulator to guide the differentiation of MSCs, and the use of these nanomaterials for strategic regenerative medicine.
A facile "click chemistry" approach to functionalize 2D macromolecules of graphene oxide nanosheets with poly(ethylene glycol) of different molecular weights,polystyrene,palmitic acid and various amino acids...
详细信息
A facile "click chemistry" approach to functionalize 2D macromolecules of graphene oxide nanosheets with poly(ethylene glycol) of different molecular weights,polystyrene,palmitic acid and various amino acids was ***,TGA,Raman spectroscopy,XPS,XRD,TEM,AFM and SEM were utilized to characterize the *** degree of functionalization was achieved on the flat surfaces of graphene oxide,affording polymer-grafted 2D brushes and amino acids-immobilized nanosheets,which show improved solubility in organic *** click chemistry strategy reported herein provides a facile and general method for functionalization of graphene oxide with macromolecules and desired biomolecules.
A facile approach to construct ferroferric oxide/chitosan composite scaffolds with three-dimensional oriented structure has been explored in this research. Chitosan and ferroferric oxide are co-precipitated by using a...
详细信息
A facile approach to construct ferroferric oxide/chitosan composite scaffolds with three-dimensional oriented structure has been explored in this research. Chitosan and ferroferric oxide are co-precipitated by using an in situ precipitation method, and then lyophilized to get the composite scaffolds. XRD indicated that Fe304 was generated during the gel formation process, and increasing the content of magnetic particles could destruct the crystal structure of chitosan. When the content of magnetic particles is lower than 10%, the layer-by-layer structure and wheel spoke structure are coexisting in the scaffolds. Increasing the content of magnetic particles, just layer-by-layer structure could be observed in the scaffolds. Ferroferric oxide particles were uniformly distributed in the matrix, the size of which was about 0.48 gm in diameter, 2 gm in length. Porosity of magnetic chitosan composite scaffolds is about 90%. When the ratio of ferroferric oxide to chitosan is 5/100, the compressive strength of the material is 0.4367 MPa, which is much higher than that of pure chitosan scaffolds, indicating that the layer-by-layer and wheel spokes complex structure is beneficial for the improvement of the mechanical properties of chitosan scaffolds. However, increasing the content of ferroferric oxide, the compressive strength of scaffolds decreased, because of the decreasing of chitosan crystallization and aggregation of magnetic particles as stress centralized body. Another reason is that the layer-by-layer and wheel spokes complex structure makes bigger contributions for the compressive strength than the layer-by-layer structure does. Three-dimensional ferroferric oxide/chitosan scaffolds could be used as hyperthermia generator system, improving the local circulation of blood, promoting the aggradation of calcium salt and stimulating bone tissue regeneration.
The emergence of nanoparticles(NPs)has attracted tremendous interest of the scientific community for decades due to their unique properties and potential applications in diverse areas,including drug delivery and *** n...
详细信息
The emergence of nanoparticles(NPs)has attracted tremendous interest of the scientific community for decades due to their unique properties and potential applications in diverse areas,including drug delivery and *** novel NPs have been synthesized and used to reduce drug toxicity,improve bio-availability,prolong circulation time,control drug release,and actively target to desired cells or ***,clinical translation of NPs with the goal of treating particularly challenging diseases,such as cancer,will require a thorough understanding of how the NP properties influence their fate in biological systems,especially in *** efforts have been paid to studying the interactions and mechanisms of NPs and *** deliberately designed,the NPs in contact with biological fluids are rapidly covered by a selected group of biomolecules especially proteins to form a corona that interacts with biological *** this view,the recent development of NPs in drug delivery and the interactions of NPs with cells and proteins are *** understanding the protein-NP interactions,some guidelines for safety design of NPs,challenges and future perspectives are discussed.
暂无评论