This paper considered the single machine scheduling problem with unequal release dates so as to minimize total completion times. This problem was proved to be as an NP-hard problem. Traditional heuristics for the prob...
详细信息
This paper considered the single machine scheduling problem with unequal release dates so as to minimize total completion times. This problem was proved to be as an NP-hard problem. Traditional heuristics for the problem were analyzed, and then we presented an improved algorithm. A numerical example and its computational result were given. The performance of the algorithm was also analyzed by experiments and the experimental results show that the algorithm is more effective than the existing heuristics.
Music recommender systems play a critical role in music streaming platforms by providing users with music that they are likely to enjoy. Recent studies have shown that user emotions can influence users’ preferences f...
详细信息
Music recommender systems play a critical role in music streaming platforms by providing users with music that they are likely to enjoy. Recent studies have shown that user emotions can influence users’ preferences for music moods. However, existing emotion-aware music recommender systems (EMRSs) explicitly or implicitly assume that users’ actual emotional states expressed through identical emotional words are homogeneous. They also assume that users’ music mood preferences are homogeneous under the same emotional state. In this article, we propose four types of heterogeneity that an EMRS should account for: emotion heterogeneity across users, emotion heterogeneity within a user, music mood preference heterogeneity across users, and music mood preference heterogeneity within a user. We further propose a Heterogeneity-aware Deep Bayesian Network (HDBN) to model these assumptions. The HDBN mimics a user’s decisionprocess of choosing music with four components: personalized prior user emotion distribution modeling, posterior user emotion distribution modeling, user grouping, and Bayesian neural network-based music mood preference prediction. We constructed two datasets, called EmoMusicLJ and EmoMusicLJ-small, to validate our method. Extensive experiments demonstrate that our method significantly outperforms baseline approaches on metrics of HR, Precision, NDCG, and MRR. Ablation studies and case studies further validate the effectiveness of our HDBN. The source code and datasets are available at https://***/jingrk/HDBN.
暂无评论