咨询与建议

限定检索结果

文献类型

  • 121 篇 会议
  • 9 篇 期刊文献

馆藏范围

  • 130 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 66 篇 工学
    • 46 篇 计算机科学与技术...
    • 38 篇 软件工程
    • 19 篇 信息与通信工程
    • 17 篇 机械工程
    • 7 篇 控制科学与工程
    • 5 篇 电气工程
    • 4 篇 光学工程
    • 3 篇 化学工程与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 生物工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 核科学与技术
    • 1 篇 网络空间安全
  • 37 篇 理学
    • 29 篇 数学
    • 14 篇 统计学(可授理学、...
    • 13 篇 物理学
    • 3 篇 化学
    • 3 篇 生物学
    • 2 篇 系统科学
    • 1 篇 地球物理学
  • 17 篇 管理学
    • 12 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 3 篇 法学
    • 2 篇 社会学
    • 1 篇 法学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 27 篇 laboratories
  • 24 篇 multimedia compu...
  • 14 篇 feature extracti...
  • 14 篇 asia
  • 12 篇 robustness
  • 10 篇 algorithm design...
  • 8 篇 clustering algor...
  • 7 篇 face recognition
  • 7 篇 kernel
  • 6 篇 image coding
  • 6 篇 psnr
  • 5 篇 linear discrimin...
  • 5 篇 training data
  • 5 篇 speech recogniti...
  • 5 篇 degradation
  • 5 篇 streaming media
  • 4 篇 learning systems
  • 4 篇 support vector m...
  • 4 篇 computational ef...
  • 4 篇 bandwidth

机构

  • 37 篇 moe-microsoft ke...
  • 23 篇 moe-microsoft ke...
  • 19 篇 microsoft resear...
  • 8 篇 moe-ms key labor...
  • 6 篇 moe-microsoft ke...
  • 6 篇 moe-microsoft ke...
  • 5 篇 department of in...
  • 5 篇 moe-ms key labor...
  • 4 篇 department of in...
  • 4 篇 anhui institute ...
  • 3 篇 moe-ms key labor...
  • 3 篇 anhui province k...
  • 3 篇 dept. of compute...
  • 3 篇 moe microsoft ke...
  • 3 篇 national science...
  • 3 篇 department of el...
  • 3 篇 moe-microsoft ke...
  • 2 篇 moe-microsoft ke...
  • 2 篇 computer science...
  • 2 篇 moe-microsoft ke...

作者

  • 25 篇 nenghai yu
  • 16 篇 yu nenghai
  • 10 篇 liansheng zhuang
  • 9 篇 beiqian dai
  • 9 篇 yanlu xie
  • 6 篇 dong xu
  • 6 篇 shuicheng yan
  • 6 篇 xian-sheng hua
  • 5 篇 hong-jiang zhang
  • 5 篇 weihai li
  • 5 篇 xu dong
  • 5 篇 yan shuicheng
  • 5 篇 wei zhou
  • 4 篇 jun sun
  • 4 篇 minghui liu
  • 4 篇 zhiqiang yao
  • 4 篇 zhuang liansheng
  • 4 篇 li bin
  • 4 篇 bin li
  • 3 篇 xiaoou tang

语言

  • 128 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"机构=MOE-MS Key Laboratory of Multimedia Computing and Communication"
130 条 记 录,以下是11-20 订阅
排序:
Error resilient coding based on reversible data hiding and redundant slice
Error resilient coding based on reversible data hiding and r...
收藏 引用
International Conference on Image and Graphics
作者: Xu, Jiajia Zhang, Weiming Yu, Nenghai Zhu, Feng Chen, Biao MOE-Microsoft Key Laboratory of Multimedia Computing and Communication University of Science and Technology of China Hefei 230026 China
Compressed video streams are sensitive to errors and losses when transmitted over wireless error-prone channels. In this paper, we propose an Error Resilient (ER) scheme based on Reversible Data Hiding (RDH) and Redun... 详细信息
来源: 评论
Adaptive error resilient coding based on FMO in wireless video transmission
Adaptive error resilient coding based on FMO in wireless vid...
收藏 引用
3rd International Conference on multimedia Information Networking and Security, MINES 2011
作者: Zhu, Feng Zhang, Weiming Yu, Nenghai Xu, Jiajia Wu, Gang MOE-Microsoft Key Laboratory of Multimedia Computing Snd Communication University of Science and Technology of China Hefei 230027 China
H.264/AVC is the latest video coding standard from ITU-T and ISO/IEC. Not only the compression performance is enhanced but also the robustness of video bit streams to errors is better. FMO (Flexible Macro-block Orderi... 详细信息
来源: 评论
Semi-supervised Classification via Low Rank Graph
Semi-supervised Classification via Low Rank Graph
收藏 引用
International Conference on Image and Graphics (ICIG)
作者: Liansheng Zhuang Haoyuan Gao Jingjing Huang Nenghai Yu MOE-MS Key Laboratory of Multimedia Computing and Communication University of Science and Technology Hefei China
Graph plays a very important role in graph based semi-supervised learning (SSL) methods. However, most current graph construction methods emphasize on local properties of the graph. In this paper, inspired by the adva... 详细信息
来源: 评论
A New Graph Constructor for Semi-supervised Discriminant Analysis via Group Sparsity
A New Graph Constructor for Semi-supervised Discriminant Ana...
收藏 引用
International Conference on Image and Graphics (ICIG)
作者: Haoyuan Gao Liansheng Zhuang Nenghai Yu MOE-MS Key Laboratory of Multimedia Computing and Communication University of Science and Technology Hefei China
Semi-supervised dimensionality reduction is very important in mining high-dimensional data due to the lack of costly labeled data. This paper studies the Semi-supervised Discriminant Analysis (SDA) algorithm, which ai... 详细信息
来源: 评论
Dynamic background subtraction using spatial-color binary patterns
Dynamic background subtraction using spatial-color binary pa...
收藏 引用
International Conference on Image and Graphics
作者: Zhou, Wei Liu, Yu Zhang, Weiming Zhuang, Liansheng Yu, Nenghai MOE-Microsoft Key Laboratory of Multimedia Computing and Communication University of Science and Technology of China Hefei China Department of Information Research Zhengzhou Information Science and Technology Institute Zhengzhou China
In this paper, an efficient approach for background modeling and subtraction is proposed. It's based on a novel spatial-color feature extraction operator named spatialcolor binary patterns(SCBP). As the name impli... 详细信息
来源: 评论
Tracking Based on SURF and Superpixel
Tracking Based on SURF and Superpixel
收藏 引用
International Conference on Image and Graphics (ICIG)
作者: Yu Liu Wei Zhou Huagang Yin Nenghai Yu MOE-Microsoft Key Laboratory of Multimedia Computing and Communication University of Science and Technology Hefei China
In this paper we present a novel algorithm for object tracking in video sequence based on SURF key-point and super pixel. SURF key-point is very effective for object matching between two images and we can use it to lo... 详细信息
来源: 评论
Error Resilient Coding Based on Reversible Data Hiding and Redundant Slice
Error Resilient Coding Based on Reversible Data Hiding and R...
收藏 引用
International Conference on Image and Graphics (ICIG)
作者: Jiajia Xu Weiming Zhang Nenghai Yu Feng Zhu Biao Chen MOE-Microsoft Key Laboratory of Multimedia Computing and Communication University of Science and Technology Hefei China
Compressed video streams are sensitive to errors and losses when transmitted over wireless error-prone channels. In this paper, we propose an Error Resilient (ER) scheme based on Reversible Data Hiding (RDH) and Redun... 详细信息
来源: 评论
ContextRank: Personalized Tourism Recommendation by Exploiting Context Information of Geotagged Web Photos
ContextRank: Personalized Tourism Recommendation by Exploiti...
收藏 引用
International Conference on Image and Graphics (ICIG)
作者: Kai Jiang Peng Wang Nenghai Yu MOE-Microsoft Key Laboratory of Multimedia Computing and Communication University of Science and Technology Hefei China
In this paper, we propose a method: ContextRank, which utilizes the vast quantity of geo tagged photos in photo sharing website to recommend travel locations. To enhance the personalized recommendation performance, ou... 详细信息
来源: 评论
Adaptive Error Resilient Coding Based on FMO in Wireless Video Transmission
Adaptive Error Resilient Coding Based on FMO in Wireless Vid...
收藏 引用
International Conference on multimedia Information Networking and Security (MINES)
作者: Feng Zhu Weiming Zhang Nenghai Yu Jiajia Xu Gang Wu MOE-Microsoft Key Laboratory of Multimedia Computing and Communication University of Science and Technology Hefei China
H.264/AVC is the latest video coding standard from ITU-T and ISO/IEC. Not only the compression performance is enhanced but also the robustness of video bit streams to errors is better. FMO (Flexible Macro-block Orderi... 详细信息
来源: 评论
An Automatic Matching Algorithm Based on SIFT Descriptors for Remote Sensing Ship Image
An Automatic Matching Algorithm Based on SIFT Descriptors fo...
收藏 引用
International Conference on Image and Graphics (ICIG)
作者: Xin You Nenghai Yu MOE-Microsoft key laboratory of Multimedia Computing and Communication University of Science and Technology HeFei Anhui China
SIFT judge the true or false targets according to the density of matching feature points. But for different images, the numbers of matching feature points are different, the density is different. So SIFT can't jud... 详细信息
来源: 评论