咨询与建议

限定检索结果

文献类型

  • 96 篇 会议
  • 28 篇 期刊文献

馆藏范围

  • 124 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 79 篇 工学
    • 71 篇 计算机科学与技术...
    • 67 篇 软件工程
    • 23 篇 控制科学与工程
    • 12 篇 信息与通信工程
    • 5 篇 化学工程与技术
    • 5 篇 农业工程
    • 3 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 网络空间安全
  • 41 篇 管理学
    • 31 篇 图书情报与档案管...
    • 20 篇 管理科学与工程(可...
  • 22 篇 理学
    • 16 篇 数学
    • 5 篇 化学
    • 5 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 1 篇 系统科学
  • 5 篇 农学
    • 5 篇 作物学
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 23 篇 natural language...
  • 16 篇 speech processin...
  • 16 篇 laboratories
  • 11 篇 data mining
  • 10 篇 support vector m...
  • 8 篇 natural language...
  • 8 篇 feature extracti...
  • 8 篇 information retr...
  • 7 篇 learning systems
  • 6 篇 knowledge engine...
  • 6 篇 electronic mail
  • 6 篇 ontologies
  • 6 篇 natural language...
  • 6 篇 testing
  • 6 篇 training
  • 6 篇 ontology
  • 5 篇 training data
  • 5 篇 text processing
  • 5 篇 fuzzy systems
  • 5 篇 syntactics

机构

  • 74 篇 moe-ms key labor...
  • 6 篇 school of comput...
  • 6 篇 school of inform...
  • 4 篇 moe-ms key labor...
  • 4 篇 research center ...
  • 3 篇 moe-microsoft ke...
  • 3 篇 moe-ms key labor...
  • 3 篇 institute for in...
  • 3 篇 school of inform...
  • 2 篇 moe-ms key labor...
  • 2 篇 school of comput...
  • 2 篇 moe-ms key lab o...
  • 2 篇 school of foreig...
  • 2 篇 moe-ms key lab. ...
  • 2 篇 department of ma...
  • 2 篇 school of inform...
  • 2 篇 department of ne...
  • 2 篇 college of compu...
  • 2 篇 school of comput...
  • 1 篇 moems key labora...

作者

  • 31 篇 zhao tiejun
  • 27 篇 tiejun zhao
  • 22 篇 dequan zheng
  • 21 篇 zheng dequan
  • 17 篇 sheng li
  • 15 篇 li sheng
  • 11 篇 tie-jun zhao
  • 7 篇 zhao tie-jun
  • 6 篇 feng yu
  • 6 篇 de-quan zheng
  • 6 篇 liu ting
  • 6 篇 zhu conghui
  • 5 篇 hao yu
  • 5 篇 yu hao
  • 4 篇 li hanjing
  • 4 篇 xu bing
  • 4 篇 liang huashen
  • 4 篇 che wanxiang
  • 4 篇 tiejun
  • 4 篇 zhao

语言

  • 124 篇 英文
检索条件"机构=MOE-MS Key Laboratory of Natural Language Processing and Speech in Harbin Institute of Technology"
124 条 记 录,以下是101-110 订阅
排序:
Maximum Entropy Model for Example-Based Machine Translation
收藏 引用
International Journal of Computer processing of languages 2007年 第2N03期20卷 101-113页
作者: YIN CHEN MUYUN YANG SHENG LI MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology P.O. Box 321 No. 92 West Dazhi Street NanGang Harbin 150001 China
Most example-based machine translation (EBMT) systems handle their translation examples using some heuristic measures based on human intuition. However, these heuristic rules are usually hard to be effectively organiz... 详细信息
来源: 评论
Meta-structure transformation model for statistical machine translation  07
Meta-structure transformation model for statistical machine ...
收藏 引用
Proceedings of the Second Workshop on Statistical Machine Translation
作者: Jiadong Sun Zhao Tiejun Huashen Liang MOE-MS Key Lab of National Language Processing and speech Harbin Institute of Technology Harbin Heilongjiang China
We propose a novel syntax-based model for statistical machine translation in which meta-structure (ms) and meta-structure sequence (Sms) of a parse tree are defined. In this framework, a parse tree is decomposed into ...
来源: 评论
Chinese Terminology Extraction Using Bilingual Web Resources
Chinese Terminology Extraction Using Bilingual Web Resources
收藏 引用
IEEE International Conference on natural language processing and Knowledge Engineering (NLP-KE)
作者: Yuhang Yang Luning Ji Qin Lu Tiejun Zhao MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Harbin China Department of Computing Hong Kong Polytechnic University Hong Kong China
Automatic terminology extraction requires termhood verification for extracted terms in a specific domain. Chinese terminology extraction suffers from insufficient domain corpora for verification even though there is a... 详细信息
来源: 评论
Chinese Information processing and Its Prospects
收藏 引用
Journal of Computer Science & technology 2006年 第5期21卷 838-846页
作者: 李生 赵铁军 MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Harbin 150001 P.R. China
The paper presents some main progresses and achievements in Chinese information processing. It focuses on six aspects, i.e., Chinese syntactic analysis, Chinese semantic analysis, machine translation, information retr... 详细信息
来源: 评论
A divide-conquer strategy for English text chunking
A divide-conquer strategy for English text chunking
收藏 引用
2006 International Conference on Machine Learning and Cybernetics
作者: Liang, Ying-Hong Wang, Ni-Hong Su, Jian-Min Ren, Hong-E. School of Information and Computer Engineering North East Forestry University Harbin 150040 MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Harbin 150001
The traditional English text chunking approach identifies phrases by using only one model and phrases with the same types of features. It has been shown that the limitations of using only one model are that: the use o... 详细信息
来源: 评论
A Multi-Agent Strategy Chinese Text for Both English and Chunking
收藏 引用
电子学报(英文版) 2006年 第3期15卷 422-426页
作者: LIANG Yinghong ZHAO Tiejun YAO Jianmin YU Hao MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Harbin 150001 China School of Information and Computer Engineering North East Forestry University Harbin 150080 China
来源: 评论
RESEARCH ON CHINESE INFORMATION RETRIEVAL BASED ON A HYBRID language MODELING
RESEARCH ON CHINESE INFORMATION RETRIEVAL BASED ON A HYBRID ...
收藏 引用
2006 International Conference on Machine Learning and Cybernetics(IEEE第五届机器学习与控制论坛)
作者: DE-QUAN ZHENG HAO YU TIE-JUN ZHAO SHENG LI FENG YU School of Computer and Information Engineering Harbin University of Commerce Harbin 150001 MOE-MS MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Har School of Computer and Information Engineering Harbin University of Commerce Harbin 150001
For information retrieval, users hope to acquire more relevant information from the top indexing documents. In this paper, a combination of Ontology with statistical method is presented to retrieval initial document s... 详细信息
来源: 评论
Documents Ranking Based on a Hybrid language Model for Chinese Information Retrieval
Documents Ranking Based on a Hybrid Language Model for Chine...
收藏 引用
International Conference on Information and Automation (ICIA)
作者: Dequan Zheng Feng Yu Tiejun Zhao Sheng Li MOE-MS Key Laboratory ofNatural Language Processing and Speech Harbin Institute of Technology Harbin China School of Computer and Information Engineering Harbin University of Commerce Harbin China
For information retrieval, users hope to acquire more relevant information from the top N ranking documents. In this paper, a hybrid Chinese language model is presented, which is defined as a combination of ontology w... 详细信息
来源: 评论
Chinese-English Cross-Lingual Information Retrieval based on Domain Ontology Knowledge
Chinese-English Cross-Lingual Information Retrieval based on...
收藏 引用
International Conference on Computational Intelligence and Security
作者: Feng Yu Dequan Zheng Tiejun Zhao Sheng Li Hao Yu School of Computer and Information Engineering Harbin University of Commerce Harbin China MOE-MS Key Laboratory of Natural Language Processingand Speech Harbin Institute of Technology Harbin China
For improving the effectiveness of cross-lingual information retrieval (CLIR), a domain ontology knowledge based method is presented to apply to C-E CLIR. In this study, the domain ontology knowledge is acquired from ... 详细信息
来源: 评论
TEXT CLASSIFICATION BASED ON A COMBINATION OF ONTOLOGY WITH STATISTICAL METHOD
TEXT CLASSIFICATION BASED ON A COMBINATION OF ONTOLOGY WITH ...
收藏 引用
2006 International Conference on Machine Learning and Cybernetics(IEEE第五届机器学习与控制论坛)
作者: FENG YU DE-QUAN ZHENG SHENG LI TIE-JUN ZHAO HAO YU School of Computer and Information Engineering Harbin University of Commerce Harbin 150076 China School of Computer and Information Engineering Harbin University of Commerce Harbin 150076 China MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of TechnologyHarb
Text classification is becoming one of the key techniques in organizing and handling a large amount of text data. In this paper, a combination of ontology with statistical method is presented to improve the precision ... 详细信息
来源: 评论