咨询与建议

限定检索结果

文献类型

  • 96 篇 会议
  • 28 篇 期刊文献

馆藏范围

  • 124 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 79 篇 工学
    • 71 篇 计算机科学与技术...
    • 67 篇 软件工程
    • 23 篇 控制科学与工程
    • 12 篇 信息与通信工程
    • 5 篇 化学工程与技术
    • 5 篇 农业工程
    • 3 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 网络空间安全
  • 41 篇 管理学
    • 31 篇 图书情报与档案管...
    • 20 篇 管理科学与工程(可...
  • 22 篇 理学
    • 16 篇 数学
    • 5 篇 化学
    • 5 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 1 篇 系统科学
  • 5 篇 农学
    • 5 篇 作物学
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 23 篇 natural language...
  • 16 篇 speech processin...
  • 16 篇 laboratories
  • 11 篇 data mining
  • 10 篇 support vector m...
  • 8 篇 natural language...
  • 8 篇 feature extracti...
  • 8 篇 information retr...
  • 7 篇 learning systems
  • 6 篇 knowledge engine...
  • 6 篇 electronic mail
  • 6 篇 ontologies
  • 6 篇 natural language...
  • 6 篇 testing
  • 6 篇 training
  • 6 篇 ontology
  • 5 篇 training data
  • 5 篇 text processing
  • 5 篇 fuzzy systems
  • 5 篇 syntactics

机构

  • 74 篇 moe-ms key labor...
  • 6 篇 school of comput...
  • 6 篇 school of inform...
  • 4 篇 moe-ms key labor...
  • 4 篇 research center ...
  • 3 篇 moe-microsoft ke...
  • 3 篇 moe-ms key labor...
  • 3 篇 institute for in...
  • 3 篇 school of inform...
  • 2 篇 moe-ms key labor...
  • 2 篇 school of comput...
  • 2 篇 moe-ms key lab o...
  • 2 篇 school of foreig...
  • 2 篇 moe-ms key lab. ...
  • 2 篇 department of ma...
  • 2 篇 school of inform...
  • 2 篇 department of ne...
  • 2 篇 college of compu...
  • 2 篇 school of comput...
  • 1 篇 moems key labora...

作者

  • 31 篇 zhao tiejun
  • 27 篇 tiejun zhao
  • 22 篇 dequan zheng
  • 21 篇 zheng dequan
  • 17 篇 sheng li
  • 15 篇 li sheng
  • 11 篇 tie-jun zhao
  • 7 篇 zhao tie-jun
  • 6 篇 feng yu
  • 6 篇 de-quan zheng
  • 6 篇 liu ting
  • 6 篇 zhu conghui
  • 5 篇 hao yu
  • 5 篇 yu hao
  • 4 篇 li hanjing
  • 4 篇 xu bing
  • 4 篇 liang huashen
  • 4 篇 che wanxiang
  • 4 篇 tiejun
  • 4 篇 zhao

语言

  • 124 篇 英文
检索条件"机构=MOE-MS Key Laboratory of Natural Language Processing and Speech in Harbin Institute of Technology"
124 条 记 录,以下是41-50 订阅
排序:
Inferring the Location of an Event in Large Corpus
收藏 引用
International Journal of Computer processing of languages 2011年 第3期23卷 255-271页
作者: HANJING LI RUNZHI DONG TIEJUN ZHAO MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Harbin Heilongjiang 150001 China Special Education School Beijing Union University Beijing 100075 China
The location of a passage is a kind of semantic information that may prove useful for a variety of applications dealing with inference over passages described in natural language texts. In this paper, we propose a met... 详细信息
来源: 评论
A Feasible Process For Mining Corpus From Web
A Feasible Process For Mining Corpus From Web
收藏 引用
International Conference on Electronic and Mechanical Engineering and Information technology (EMEIT)
作者: Chao Wang Dequan Zheng Tiejun Zhao Ji Guo MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Harbin China NLP Group Aliyun Inc. Beijing China
Mining bilingual parallel sentence pair from Web data is the most effective way to get large-scale of bilingual corpus. In this paper, we put forward both the set of method and the series of process for extracting par... 详细信息
来源: 评论
A study of features on primary question detection in chinese online forums
A study of features on primary question detection in chinese...
收藏 引用
2010 7th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2010
作者: Sun, Lin Liu, Bingquan Wang, Baoxun Zhang, Deyuan Wang, Xiaolong MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Harbin China
Primary Question detection in online forum is a subtask of extracting question-answer pairs. In this paper, by surveying the forms of questions in Chinese online forums, a combination of textual and N-gram features ac... 详细信息
来源: 评论
A clustering based fast detection algorithm for large scale duplicate emails
A clustering based fast detection algorithm for large scale ...
收藏 引用
International Conference on Machine Learning and Cybernetics
作者: Sun, Lin Liu, Bing-Quan Wang, Bao-Xun Wang, Xiao-Long MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Harbin 150001 China
Duplicate emails, which exist on the internet widely and are mainly caused by mailing lists, not only waste storage resource but also bring users garbage. In this paper, according to the structure and text feature of ... 详细信息
来源: 评论
Event entailment extraction based on EM iteration
Event entailment extraction based on EM iteration
收藏 引用
International Conference on Asian language processing
作者: Li, Zhen Li, Hanjing Yu, Mo Zhao, Tiejun Li, Sheng MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Harbin 150001 China
In the research and development of various natural language processing systems, like Q&A system and text-to-scene conversation system, we realize that knowledge of text entailment helps a lot in improving the perf... 详细信息
来源: 评论
Research on domain-adaptive transfer learning method and its applications
Research on domain-adaptive transfer learning method and its...
收藏 引用
International Conference on Asian language processing
作者: Fei, Geli Zheng, Dequan MOE-Microsoft Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Harbin China
Traditional machine learning methods rely on strong assumptions, especially assuming that training data and testing data in homogeneous feature spaces. However, this is not always true in reality. To break such assump... 详细信息
来源: 评论
An information extraction system for heterogeneous Web source
An information extraction system for heterogeneous Web sourc...
收藏 引用
International Conference on Machine Learning and Cybernetics
作者: Zhou, Ting Sun, Cheng-Jie Lin, Lei Liu, Bing-Quan MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology School of Computer Science and Technology Harbin 150001 China
Information Extraction is the task of identifying information in texts and converting it into a predefined format. In this paper, we build an information integration system which focuses on the information of computer... 详细信息
来源: 评论
Event entailment chains extraction for Text-to-Scene conversion
Event entailment chains extraction for Text-to-Scene convers...
收藏 引用
International Conference on Machine Learning and Cybernetics
作者: Li, Han-Jing Li, Zhen Xue, Xiao-Ping Zhao, Tie-Jun Department of Mathematics Harbin Institute of Technology Harbin 150001 China MOE-MS Key Lab of Natural Language Processing and Speech Harbin Institute of Technology Harbin 150001 China
In our study of Text-to-Scene conversation (TTS), which translates natural language into animations automatically, we realized that event entailment knowledge is useful in generating scenes since the main part of a sc... 详细信息
来源: 评论
Semi-supervised domain adaptation for WSD: Using a word-by-word model selection approach
Semi-supervised domain adaptation for WSD: Using a word-by-w...
收藏 引用
IEEE International Conference on Cognitive Informatics
作者: Guo, Yuhang Che, Wanxiang Liu, Ting Li, Sheng MOE-Microsoft Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology School of Computer Science and Technology 150001 China
This paper proposes a word-by-word model selection approach to domain adaptation for Word Sense Disambiguation. By this approach, the model for a target word is automatically selected from a candidate model set, which... 详细信息
来源: 评论
Research on automatic pattern acquisition based on construction extension
收藏 引用
Journal of Convergence Information technology 2010年 第1期5卷 122-127页
作者: Chen, Yu Zheng, Dequan Zheng, Bowen Zhao, Tiejun MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Harbin 150001 China
Although entities are named under some specific rules, the amount of various names makes it impossible for computers to detect these entities in a context because of the complex variety of the rules. If we can create ... 详细信息
来源: 评论