咨询与建议

限定检索结果

文献类型

  • 80 篇 会议
  • 21 篇 期刊文献

馆藏范围

  • 101 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 61 篇 工学
    • 54 篇 计算机科学与技术...
    • 50 篇 软件工程
    • 19 篇 控制科学与工程
    • 12 篇 信息与通信工程
    • 5 篇 化学工程与技术
    • 2 篇 机械工程
    • 2 篇 农业工程
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
  • 34 篇 管理学
    • 26 篇 图书情报与档案管...
    • 17 篇 管理科学与工程(可...
  • 21 篇 理学
    • 15 篇 数学
    • 5 篇 化学
    • 5 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 1 篇 系统科学
  • 2 篇 农学
    • 2 篇 作物学
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 21 篇 natural language...
  • 15 篇 speech processin...
  • 15 篇 laboratories
  • 11 篇 data mining
  • 7 篇 support vector m...
  • 6 篇 natural language...
  • 6 篇 feature extracti...
  • 6 篇 ontology
  • 5 篇 knowledge engine...
  • 5 篇 learning systems
  • 5 篇 electronic mail
  • 5 篇 ontologies
  • 5 篇 fuzzy systems
  • 5 篇 semantics
  • 5 篇 testing
  • 5 篇 information retr...
  • 5 篇 training
  • 4 篇 information anal...
  • 4 篇 search engines
  • 4 篇 terminology

机构

  • 74 篇 moe-ms key labor...
  • 6 篇 school of inform...
  • 4 篇 moe-ms key labor...
  • 4 篇 school of comput...
  • 3 篇 moe-ms key labor...
  • 3 篇 institute for in...
  • 3 篇 school of inform...
  • 2 篇 moe-ms key labor...
  • 2 篇 school of comput...
  • 2 篇 school of foreig...
  • 2 篇 school of inform...
  • 2 篇 college of compu...
  • 2 篇 school of comput...
  • 1 篇 moe-ms key labor...
  • 1 篇 school of inform...
  • 1 篇 department of co...
  • 1 篇 beijing graphics...
  • 1 篇 harbin institute...
  • 1 篇 moe-ms key labor...
  • 1 篇 moe-ms key labor...

作者

  • 25 篇 tiejun zhao
  • 24 篇 zhao tiejun
  • 20 篇 dequan zheng
  • 19 篇 zheng dequan
  • 15 篇 sheng li
  • 11 篇 tie-jun zhao
  • 10 篇 li sheng
  • 6 篇 zhao tie-jun
  • 6 篇 de-quan zheng
  • 6 篇 zhu conghui
  • 5 篇 feng yu
  • 4 篇 li hanjing
  • 4 篇 xu bing
  • 4 篇 tiejun
  • 4 篇 zhao
  • 4 篇 liang ying-hong
  • 4 篇 hao yu
  • 4 篇 yu hao
  • 3 篇 ying-hong liang
  • 3 篇 yuhang yang

语言

  • 101 篇 英文
检索条件"机构=MOE-MS Key Laboratory ofNatural Language Processing and Speech"
101 条 记 录,以下是51-60 订阅
排序:
Hierarchical text categorization based on multiple feature selection and fusion of multiple classifiers approaches
Hierarchical text categorization based on multiple feature s...
收藏 引用
6th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2009
作者: Jia, Mei-Ying Zheng, De-Quan Yang, Bing-Ru Chen, Qing-Xuan School of Information Engineering University of Science and Technology Beijing China MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology China
Hierarchical Text Categorization refers to assigning of one or more suitable category from a hierarchical category space to a document. In this paper, we used hierarchical feature selection method and multiple classif... 详细信息
来源: 评论
Subgraph based multitext grammar for statistical machine translation
收藏 引用
Journal of Computational Information Systems 2009年 第1期5卷 369-377页
作者: Sun, Jiadong Zhao, Tiejun MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Harbin 150001 China
To acquire the alignments and projection of structures at different levels in statistical machine translation (SMT), we define Subgraph and Subgraph pairs in this paper. With Subgraphs of the parse tree, we can decora... 详细信息
来源: 评论
A re-ranking approach for categorization information retrieval based on multiple feature selection
收藏 引用
Journal of Computational Information Systems 2009年 第6期5卷 1609-1616页
作者: Zheng, Bowen Zheng, Dequan Zhao, Tiejun Chen, Qingxuan MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Harbin 150001 China
In this paper, a re-ranking approach for categorization information retrieval is proposed to improve precision based on hierarchical feature selection method. This paper discusses the multiple feature selection method... 详细信息
来源: 评论
An unsupervised approach for noun resolution
收藏 引用
Journal of Information and Computational Science 2009年 第3期6卷 1263-1270页
作者: Yang, Yuhang Zhao, Tiejun Zheng, Dequan Yu, Hao MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Harbin 150001 China
Most existing coreference resolution techniques focus on pronoun resolution in the same document. In this paper, an unsupervised approach is presented for noun resolution in different documents. Given two raw corpora,... 详细信息
来源: 评论
Research on query translation for clir based on a combination of statistical method and web information
收藏 引用
Journal of Computational Information Systems 2009年 第3期5卷 1115-1122页
作者: Zhu, Honglei Zheng, Dequan Zhao, Tiejun MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Harbin 150001 China
Query translation is an important task for cross-language information retrieval (CLIR), which aims at translating the query described in source language into target language. The approach to query translation based on... 详细信息
来源: 评论
Opinion Analysis Based on a Fusion of Multiple Classifiers Approach
Opinion Analysis Based on a Fusion of Multiple Classifiers A...
收藏 引用
International Conference on Natural language processing and Knowledge Engineering(IEEE自然语言处理与知识工程国际会议 IEEE NLP-KE 2009)
作者: Bing XU Tie-jun ZHAO De-quan ZHENG Qing-xuan CHEN MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Harbin 150001
With the rapid expansion of network application, more and more customer reviews are available on-line. In this paper, A method for opinion analysis based on the fusion of multiple classifiers was presented, reliabilit... 详细信息
来源: 评论
Automatic Domain-Ontology Structure and Example Acquisition from Semi-Structured Texts
Automatic Domain-Ontology Structure and Example Acquisition ...
收藏 引用
International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)
作者: Cheng Xiao Dequan Zheng Yuhang Yang MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Harbin China
This paper presents a new method to acquire domain-ontology structure and examples from semi-structured data sources. Firstly, extract domain-ontology structure, including candidate attributes extraction using certain... 详细信息
来源: 评论
Automatic domain ontology construction based on thesauri
Automatic domain ontology construction based on thesauri
收藏 引用
6th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2009
作者: Sun, Weicong Jia, Meiying Zheng, Dequan Cao, Hongqiang Yang, Bingru Yu, Hao MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Harbin 150001 China School of Information Engineering University of Science and Technology Beijing 100083 China Beijing Graphic Institution Beijing 100029 China
The research on the automatic ontology construction has become very popular. It is very useful for the ontology construction to reengineer the existing knowledge resource, such as the thesauri. But many relationships ... 详细信息
来源: 评论
Hierarchical Text Categorization Based on Multiple Feature Selection and Fusion of Multiple Classifiers Approaches
Hierarchical Text Categorization Based on Multiple Feature S...
收藏 引用
International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)
作者: Mei-ying Jia De-quan Zheng Bing-ru Yang Qing-xuan Chen School of Information Engineering University of Science and Technology Beijing China MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology China
Hierarchical text categorization refers to assigning of one or more suitable category from a hierarchical category space to a document. In this paper, we used hierarchical feature selection method and multiple classif... 详细信息
来源: 评论
Automatic Domain-Ontology Relation Extraction from Semi-structured Texts
Automatic Domain-Ontology Relation Extraction from Semi-stru...
收藏 引用
International Conference on Asian language processing (IALP)
作者: Cheng Xiao Dequan Zheng Yuhang Yang Guojun Shao MOE-MS Key Laboratory of Natural Language Processing and Speech Harbin Institute of Technology Harbin China Automatic Information Technology Company Limited Beijing Shougang Qinhuangdao China
This paper presents a new method to acquire domain-ontology relations from semi-structured data sources. First, obtain Web documents according to the co-occurrence of concept instance and attribute value. Further, def... 详细信息
来源: 评论