咨询与建议

限定检索结果

文献类型

  • 101 篇 会议
  • 28 篇 期刊文献

馆藏范围

  • 129 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 84 篇 工学
    • 61 篇 计算机科学与技术...
    • 49 篇 软件工程
    • 22 篇 信息与通信工程
    • 17 篇 生物医学工程(可授...
    • 10 篇 机械工程
    • 10 篇 控制科学与工程
    • 9 篇 生物工程
    • 6 篇 光学工程
    • 5 篇 建筑学
    • 4 篇 化学工程与技术
    • 3 篇 材料科学与工程(可...
    • 3 篇 电气工程
    • 3 篇 土木工程
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
  • 45 篇 理学
    • 27 篇 数学
    • 11 篇 生物学
    • 9 篇 物理学
    • 8 篇 统计学(可授理学、...
    • 5 篇 系统科学
    • 4 篇 化学
  • 32 篇 管理学
    • 25 篇 图书情报与档案管...
    • 11 篇 管理科学与工程(可...
  • 13 篇 医学
    • 12 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 4 篇 农学
    • 2 篇 作物学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学

主题

  • 9 篇 support vector m...
  • 8 篇 electroencephalo...
  • 8 篇 laboratories
  • 7 篇 intelligent syst...
  • 5 篇 training
  • 4 篇 image retrieval
  • 3 篇 machine translat...
  • 3 篇 collaborative fi...
  • 3 篇 indexing
  • 3 篇 lighting
  • 3 篇 search engines
  • 3 篇 data mining
  • 3 篇 computational mo...
  • 3 篇 pattern recognit...
  • 3 篇 semantics
  • 3 篇 feature extracti...
  • 3 篇 humans
  • 3 篇 emotion recognit...
  • 3 篇 sleep
  • 3 篇 accuracy

机构

  • 14 篇 microsoft resear...
  • 14 篇 moe-microsoft ke...
  • 8 篇 moe-microsoft ke...
  • 6 篇 center for brain...
  • 5 篇 department of co...
  • 5 篇 moe-microsoft ke...
  • 4 篇 moe-microsoft ke...
  • 4 篇 shanghai jiao to...
  • 4 篇 department of co...
  • 3 篇 moe-microsoft la...
  • 3 篇 moe-ms key labor...
  • 3 篇 fudan university
  • 3 篇 moe key laborato...
  • 3 篇 moe-microsoft ke...
  • 3 篇 seattle united s...
  • 3 篇 department of co...
  • 3 篇 shanghai key lab...
  • 3 篇 center for brain...
  • 3 篇 moe-microsoft ke...
  • 3 篇 center for brain...

作者

  • 27 篇 lu bao-liang
  • 16 篇 zhao hai
  • 16 篇 zhang liqing
  • 12 篇 bao-liang lu
  • 7 篇 hai zhao
  • 5 篇 li dongsheng
  • 5 篇 liqing zhang
  • 4 篇 lu tun
  • 4 篇 gu ning
  • 4 篇 xubo yang
  • 4 篇 hongtao lu
  • 4 篇 lu hongtao
  • 4 篇 li junhua
  • 4 篇 shang li
  • 4 篇 wang xiao-lin
  • 4 篇 fu yuxi
  • 3 篇 zhang lei
  • 3 篇 xia jiafeng
  • 3 篇 kwok james t.
  • 3 篇 li mu

语言

  • 125 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"机构=MOE-Microsoft Laboratory of Intelligent Computing and Intelligent Systems"
129 条 记 录,以下是41-50 订阅
排序:
Detection of driving fatigue based on grip force on steering wheel with wavelet transformation and support vector machine
Detection of driving fatigue based on grip force on steering...
收藏 引用
20th International Conference on Neural Information Processing, ICONIP 2013
作者: Li, Fan Wang, Xiao-Wei Lu, Bao-Liang Center for Brain-like Computing and Machine Intelligence Department of Computer Science and Engineering China MOE-Microsoft Key Lab. for Intelligent Computing and Intelligent Systems Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
This paper proposes an unobtrusive way to detect fatigue for drivers through grip forces on steering wheel. Simulated driving experiments are conducted in a refitted passenger car, during which grip forces of both han... 详细信息
来源: 评论
Spectral power estimation for unevenly spaced motor imagery data
Spectral power estimation for unevenly spaced motor imagery ...
收藏 引用
20th International Conference on Neural Information Processing, ICONIP 2013
作者: Li, Junhua Struzik, Zbigniew Zhang, Liqing Cichocki, Andrzej MOE-Microsoft Key Laboratory for Intelligent Information and Intelligent Systems Shanghai Jiao Tong University Shanghai 200240 China Laboratory for Advanced Brain Signal Processing Brain Science Institute RIKEN Saitama 351-0198 Japan
The human brain can send a command to external devices or communicate with the outside environment by the means of a brain computer interface (BCI) system. The effectiveness depends on how precisely specific brain act... 详细信息
来源: 评论
GESTALT SALIENCY: SALIENT REGION DETECTION BASED ON GESTALT PRINCIPLES
GESTALT SALIENCY: SALIENT REGION DETECTION BASED ON GESTALT ...
收藏 引用
IEEE International Conference on Image Processing
作者: Jie Wu Liqing Zhang MOE-Microsoft Laboratory for Intelligent Computing and Intelligent Systems Dept. of CSE Shanghai Jiao Tong University
Salient region detection is of great significance in computer vision such as object recognition, image segmentation and image retrieval. However, low-level saliency has certain limitations due to lack of object level ... 详细信息
来源: 评论
Real-time head detection with kinect for driving fatigue detection
Real-time head detection with kinect for driving fatigue det...
收藏 引用
20th International Conference on Neural Information Processing, ICONIP 2013
作者: Cao, Yang Lu, Bao-Liang Center for Brain-like Computing and Machine Intelligence Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai 200240 China MOE-Microsoft Key Lab. for Intelligent Computing and Intelligent Systems Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
Nowadays, depth cameras such microsoft Kinect make it easier and cheaper for us to capture depth images. It becomes practical to use depth images for detection in consumer-grade products. In this paper, we propose a n... 详细信息
来源: 评论
Improving function word alignment with frequency and syntactic information
Improving function word alignment with frequency and syntact...
收藏 引用
23rd International Joint Conference on Artificial Intelligence, IJCAI 2013
作者: Zhang, Jingyi Zhao, Hai MOE-Microsoft Key Laboratory of Intelligent Computing and Intelligent System Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China Department of Computer Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
In statistical word alignment for machine translation, function words usually cause poor aligning performance because they do not have clear correspondence between different languages. This paper proposes a novel appr... 详细信息
来源: 评论
Marginalized denoising autoencoder via graph regularization for domain adaptation
Marginalized denoising autoencoder via graph regularization ...
收藏 引用
20th International Conference on Neural Information Processing, ICONIP 2013
作者: Peng, Yong Wang, Shen Lu, Bao-Liang Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Shanghai Jiao Tong Unviersity Shanghai 200240 China Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor MI 48109 United States MoE-Microsoft Key Lab. for Intelligent Computing and Intelligent Systems Shanghai Jiao Tong Unviersity Shanghai 200240 China
Domain adaptation, which aims to learn domain-invariant features for sentiment classification, has received increasing attention. The underlying rationality of domain adaptation is that the involved domains share some... 详细信息
来源: 评论
NEURAL SUBSTRATES OF MOTOR IMAGERY BASED BRAIN-COMPUTER INTERFACE TRAINING FOR STROKE PATIENTS WITH SEVERE UPPER LIMB PARALYSIS
NEURAL SUBSTRATES OF MOTOR IMAGERY BASED BRAIN-COMPUTER INTE...
收藏 引用
第七届国际物理医学与康复医学学术大会(7th World Congress of the international society of Physical and Rehabilitation Medicine(ISPRM2013)
作者: Mingfen Li Jie Jia Ye Liu Department of Rehabilitation Huashan Hospital Fudan University MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems Department of Computer Science and Engineering Shanghai Jiao Tong University China
来源: 评论
Converting continuous-space language models into N-gram language models for statistical machine translation
Converting continuous-space language models into N-gram lang...
收藏 引用
2013 Conference on Empirical Methods in Natural Language Processing, EMNLP 2013
作者: Wang, Rui Utiyama, Masao Goto, Isao Sumita, Eiichro Zhao, Hai Lu, Bao-Liang Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Shanghai Jiao Tong Unviersity Shanghai200240 China Multilingual Translation Laboratory MASTAR Project National Institute of Information and Communications Technology 3-5 Hikaridai Keihanna Science City Kyoto619-0289 Japan MOE-Microsoft Key Lab. for Intelligent Computing and Intelligent Systems Shanghai Jiao Tong Unviersity Shanghai200240 China
Neural network language models, or continuous-space language models (CSLMs), have been shown to improve the performance of statistical machine translation (SMT) when they are used for reranking n-best translations. Ho... 详细信息
来源: 评论
Structure preserving low-rank representation for semi-supervised face recognition
Structure preserving low-rank representation for semi-superv...
收藏 引用
20th International Conference on Neural Information Processing, ICONIP 2013
作者: Peng, Yong Wang, Suhang Wang, Shen Lu, Bao-Liang Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Shanghai Jiao Tong Unviersity Shanghai 200240 China Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor MI 48109 United States MOE-Microsoft Key Lab. for Intelligent Computing and Intelligent Systems Shanghai Jiao Tong Unviersity Shanghai 200240 China
Constructing an informative and discriminative graph plays an important role in the graph based semi-supervised learning methods. Among these graph construction methods, low-rank representation based graph, which calc... 详细信息
来源: 评论
An empirical study on word segmentation for Chinese machine translation
An empirical study on word segmentation for Chinese machine ...
收藏 引用
14th Annual Conference on intelligent Text Processing and Computational Linguistics, CICLing 2013
作者: Zhao, Hai Utiyama, Masao Sumita, Eiichiro Lu, Bao-Liang MOE-Microsoft Key Laboratory of Intelligent Computing and Intelligent System Shanghai Jiao Tong University #800 Dongchuan Road Shanghai 200240 China Department of Computer Science and Engineering Shanghai Jiao Tong University #800 Dongchuan Road Shanghai 200240 China Multilingual Translation Laboratory MASTAR Project National Institute of Information and Communications Technology 3-5 Hikaridai Keihanna Science City Kyoto 619-0289 Japan
Word segmentation has been shown helpful for Chinese-to-English machine translation (MT), yet the way different segmentation strategies affect MT is poorly understood. In this paper, we focus on comparing different se... 详细信息
来源: 评论