咨询与建议

限定检索结果

文献类型

  • 261 篇 期刊文献
  • 118 篇 会议
  • 1 册 图书

馆藏范围

  • 380 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 243 篇 工学
    • 153 篇 计算机科学与技术...
    • 127 篇 软件工程
    • 67 篇 生物工程
    • 45 篇 生物医学工程(可授...
    • 41 篇 信息与通信工程
    • 34 篇 控制科学与工程
    • 24 篇 光学工程
    • 21 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 建筑学
    • 13 篇 土木工程
    • 13 篇 安全科学与工程
    • 9 篇 力学(可授工学、理...
    • 9 篇 机械工程
    • 9 篇 仪器科学与技术
  • 186 篇 理学
    • 91 篇 数学
    • 68 篇 生物学
    • 54 篇 物理学
    • 45 篇 统计学(可授理学、...
    • 21 篇 系统科学
    • 17 篇 化学
    • 14 篇 地球物理学
  • 63 篇 管理学
    • 34 篇 图书情报与档案管...
    • 29 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 36 篇 医学
    • 32 篇 临床医学
    • 23 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 12 篇 公共卫生与预防医...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 7 篇 农学
  • 6 篇 教育学
  • 5 篇 法学
  • 1 篇 文学

主题

  • 16 篇 machine learning
  • 15 篇 deep learning
  • 13 篇 image segmentati...
  • 12 篇 accuracy
  • 8 篇 feature extracti...
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 6 篇 predictive model...
  • 5 篇 semantic segment...
  • 5 篇 galaxies
  • 5 篇 generative adver...
  • 5 篇 noise measuremen...
  • 5 篇 noise
  • 5 篇 graph neural net...
  • 5 篇 semantics
  • 5 篇 stochastic syste...
  • 5 篇 diseases
  • 4 篇 reinforcement le...
  • 4 篇 data mining
  • 4 篇 cosmology

机构

  • 40 篇 center for data ...
  • 37 篇 center for machi...
  • 33 篇 munich center fo...
  • 17 篇 munich center fo...
  • 15 篇 beijing internat...
  • 13 篇 munich data scie...
  • 11 篇 peking universit...
  • 11 篇 national biomedi...
  • 10 篇 national enginee...
  • 9 篇 school of mathem...
  • 8 篇 mdsi – munich da...
  • 8 篇 mcml – munich ce...
  • 7 篇 munich data scie...
  • 7 篇 national key lab...
  • 7 篇 center for intel...
  • 6 篇 machine learning...
  • 6 篇 dortmund data sc...
  • 6 篇 department of co...
  • 6 篇 munich data scie...
  • 6 篇 peking universit...

作者

  • 19 篇 zhu xiao xiang
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 11 篇 dong bin
  • 10 篇 li zhang
  • 10 篇 bin dong
  • 10 篇 zhang li
  • 8 篇 zifan chen
  • 8 篇 chen zifan
  • 8 篇 shi yilei
  • 7 篇 jie zhao
  • 7 篇 veselovska anna
  • 7 篇 fornasier massim...
  • 6 篇 li hongwei bran
  • 6 篇 zhao jie
  • 6 篇 linguraru marius...
  • 6 篇 weinan e.
  • 6 篇 björn w. schulle...

语言

  • 294 篇 英文
  • 83 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning Data Science Center"
380 条 记 录,以下是11-20 订阅
排序:
Expected Probabilistic Hierarchies  38
Expected Probabilistic Hierarchies
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Kollovieh, Marcel Charpentier, Bertrand Zügner, Daniel Günnemann, Stephan School of Computation Information and Technology Technical University of Munich Germany Munich Data Science Institute Germany Munich Center for Machine Learning Germany Pruna AI Germany Microsoft Research AI for Science United States
Hierarchical clustering has usually been addressed by discrete optimization using heuristics or continuous optimization of relaxed scores for hierarchies. In this work, we propose to optimize expected scores under a p...
来源: 评论
Improving Generalization and Convergence by Enhancing Implicit Regularization  38
Improving Generalization and Convergence by Enhancing Implic...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Wang, Mingze Wang, Jinbo He, Haotian Wang, Zilin Huang, Guanhua Xiong, Feiyu Li, Zhiyu Weinan, E. Wu, Lei School of Mathematical Sciences Peking University China Center for Machine Learning Research Peking University China China AI for Science Institute China School of Data Science University of Science and Technology of China China ByteDance Research China
In this work, we propose an Implicit Regularization Enhancement (IRE) framework to accelerate the discovery of flat solutions in deep learning, thereby improving generalization and convergence. Specifically, IRE decou...
来源: 评论
Optimal bounds for p sensitivity sampling via 2 augmentation  41
Optimal bounds for p sensitivity sampling via 2 augmentation
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Munteanu, Alexander Omlor, Simon Dortmund Data Science Center Faculties of Statistics and Computer Science TU Dortmund University Dortmund Germany Faculty of Statistics TU Dortmund University Dortmund Germany Lamarr-Institute for Machine Learning and Artificial Intelligence Dortmund Germany
data subsampling is one of the most natural methods to approximate a massively large data set by a small representative proxy. In particular, sensitivity sampling received a lot of attention, which samples points prop... 详细信息
来源: 评论
Turnstile p leverage score sampling with applications  41
Turnstile p leverage score sampling with applications
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Munteanu, Alexander Omlor, Simon Dortmund Data Science Center Faculties of Statistics and Computer Science TU Dortmund University Dortmund Germany Faculty of Statistics TU Dortmund University Dortmund Germany Lamarr-Institute for Machine Learning and Artificial Intelligence Dortmund Germany
The turnstile data stream model offers the most flexible framework where data can be manipulated dynamically, i.e., rows, columns, and even single entries of an input matrix can be added, deleted, or updated multiple ... 详细信息
来源: 评论
On the Effectiveness of Heterogeneous Ensemble Methods for Re-Identification  23
On the Effectiveness of Heterogeneous Ensemble Methods for R...
收藏 引用
23rd IEEE International Conference on machine learning and Applications, ICMLA 2024
作者: Klüttermann, Simon Rutinowski, Jérôme Polachowski, Frederik Nguyen, Anh Grimme, Britta Roidl, Moritz Müller, Emmanuel Paderborn University Paderborn Germany Tu Dortmund University Dortmund Germany Lamarr Institute for Machine Learning and Artificial Intelligence Dortmund Germany Research Center Trustworthy Data Science and Security Dortmund Germany
In this contribution, we introduce a novel ensemble method for the re-identification of industrial entities, using images of chipwood pallets and galvanized metal plates as dataset examples. Our algorithms replace com... 详细信息
来源: 评论
An Improved Finite-time Analysis of Temporal Difference learning with Deep Neural Networks  41
An Improved Finite-time Analysis of Temporal Difference Lear...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Ke, Zhifa Wen, Zaiwen Zhang, Junyu Center for Data Science Peking University China Beijing International Center for Mathematical Research Center for Machine Learning Research Changsha Institute for Computing and Digital Economy Beijing China Department of Industrial Systems Engineering and Management National University of Singapore Singapore
Temporal difference (TD) learning algorithms with neural network function parameterization have well-established empirical success in many practical large-scale reinforcement learning tasks. However, theoretical under... 详细信息
来源: 评论
Can Gaussian Sketching Converge Faster on a Preconditioned Landscape?  41
Can Gaussian Sketching Converge Faster on a Preconditioned L...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Wang, Yilong Ye, Haishan Dai, Guang Tsang, Ivor W. Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China SGIT AI Lab State Grid Corporation of China China Singapore College of Computing and Data Science NTU Singapore
This paper focuses on the large-scale optimization which is very popular in the big data era. The gradient sketching is an important technique in the large-scale optimization. Specifically, the random coordinate desce... 详细信息
来源: 评论
Double Stochasticity Gazes Faster: Snap-Shot Decentralized Stochastic Gradient Tracking Methods  41
Double Stochasticity Gazes Faster: Snap-Shot Decentralized S...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Di, Hao Ye, Haishan Chang, Xiangyu Dai, Guang Tsang, Ivor W. Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China SGIT AI Lab State Grid Corporation of China China College of Computing and Data Science NTU Singapore Singapore
In decentralized optimization, m agents form a network and only communicate with their neighbors, which gives advantages in data ownership, privacy, and scalability. At the same time, decentralized stochastic gradient... 详细信息
来源: 评论
Noisy Recovery in Unlimited Sampling via Adaptive Modulo Representations
Noisy Recovery in Unlimited Sampling via Adaptive Modulo Rep...
收藏 引用
2024 International Workshop on the Theory of Computational Sensing and its Applications to Radar, Multimodal Sensing and Imaging, CoSeRa 2024
作者: Patricio, Felipe Pagginelli Catala, Paul Krahmer, Felix Tu Munich Dept. of Mathematics Garching Germany Ibmi Helmholtz Munich Neuherberg Germany Institute Tu Munich Munich Center for Machine Learning Dept. of Mathematics&Munich Data Science Garching Germany
Recent works put forth the Unlimited Sensing Framework (USF), a novel approach to analog-to-digital conversion for high dynamic range sensing. It addresses the saturation phenomenon that commonly arises when physical ... 详细信息
来源: 评论
The Challenges of the Nonlinear Regime for Physics-Informed Neural Networks  38
The Challenges of the Nonlinear Regime for Physics-Informed ...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Bonfanti, Andrea Bruno, Giuseppe Cipriani, Cristina BMW AG Basque Center for Applied Mathematics University of the Basque Country Digital Campus Munich Spain BMW AG Digital Campus Munich Germany Technical University of Munich Munich Center for Machine Learning Munich Data Science Institute Germany
The Neural Tangent Kernel (NTK) viewpoint is widely employed to analyze the training dynamics of overparameterized Physics-Informed Neural Networks (PINNs). However, unlike the case of linear Partial Differential Equa...
来源: 评论