咨询与建议

限定检索结果

文献类型

  • 300 篇 期刊文献
  • 88 篇 会议

馆藏范围

  • 388 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 235 篇 工学
    • 123 篇 计算机科学与技术...
    • 44 篇 软件工程
    • 39 篇 生物工程
    • 36 篇 电气工程
    • 30 篇 生物医学工程(可授...
    • 20 篇 控制科学与工程
    • 16 篇 化学工程与技术
    • 14 篇 信息与通信工程
    • 9 篇 材料科学与工程(可...
    • 7 篇 光学工程
    • 7 篇 电子科学与技术(可...
    • 5 篇 仪器科学与技术
    • 5 篇 土木工程
  • 194 篇 理学
    • 101 篇 生物学
    • 30 篇 数学
    • 29 篇 化学
    • 25 篇 物理学
    • 22 篇 统计学(可授理学、...
    • 12 篇 地球物理学
    • 6 篇 天文学
  • 102 篇 医学
    • 52 篇 临床医学
    • 45 篇 基础医学(可授医学...
    • 24 篇 药学(可授医学、理...
    • 10 篇 特种医学
    • 6 篇 公共卫生与预防医...
  • 28 篇 农学
    • 13 篇 作物学
  • 22 篇 管理学
    • 13 篇 管理科学与工程(可...
    • 6 篇 图书情报与档案管...
  • 12 篇 教育学
    • 8 篇 心理学(可授教育学...
  • 7 篇 法学
    • 5 篇 社会学
  • 5 篇 经济学
  • 1 篇 哲学

主题

  • 43 篇 machine learning
  • 18 篇 deep learning
  • 12 篇 artificial intel...
  • 8 篇 drug discovery
  • 7 篇 classification
  • 5 篇 covid-19
  • 5 篇 support vector m...
  • 5 篇 schizophrenia
  • 5 篇 breast cancer
  • 5 篇 diagnosis
  • 5 篇 predictive model...
  • 5 篇 feature extracti...
  • 5 篇 gene expression
  • 5 篇 training
  • 4 篇 learning systems
  • 4 篇 neurons
  • 4 篇 cancer
  • 4 篇 galaxies
  • 4 篇 image segmentati...
  • 4 篇 kernel methods

机构

  • 21 篇 carnegie mellon ...
  • 8 篇 carnegie mellon ...
  • 7 篇 center for machi...
  • 7 篇 carnegie mellon ...
  • 6 篇 carnegie mellon ...
  • 6 篇 univ bonn lamarr...
  • 6 篇 harvard mit prog...
  • 6 篇 carnegie mellon ...
  • 6 篇 univ new south w...
  • 6 篇 princeton univ c...
  • 6 篇 harvard univ wys...
  • 6 篇 ai for science i...
  • 5 篇 univ sharjah sha...
  • 5 篇 amity univ amity...
  • 5 篇 lab crestview ra...
  • 5 篇 imperial coll lo...
  • 5 篇 peking univ ctr ...
  • 5 篇 publ hlth englan...
  • 5 篇 univ pittsburgh ...
  • 5 篇 univ tehran med ...

作者

  • 22 篇 bajorath juergen
  • 21 篇 alinejad-rokny h...
  • 10 篇 weinan e.
  • 8 篇 shoeibi afshin
  • 8 篇 smola alexander ...
  • 8 篇 smola alex j.
  • 8 篇 collins james j.
  • 7 篇 beheshti amin
  • 7 篇 alizadehsani roo...
  • 6 篇 kim min seo
  • 6 篇 ezhov ivan
  • 6 篇 linguraru marius...
  • 6 篇 le quoc v.
  • 6 篇 xing eric p.
  • 6 篇 murphy robert f.
  • 6 篇 kim ji hoon
  • 5 篇 debela sisay abe...
  • 5 篇 gupta sapna
  • 5 篇 santric-milicevi...
  • 5 篇 momtazmanesh sar...

语言

  • 372 篇 英文
  • 15 篇 其他
检索条件"机构=Machine Learning Program"
388 条 记 录,以下是11-20 订阅
排序:
Data-oriented protein kinase drug discovery
收藏 引用
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY 2024年 271卷 116413页
作者: Xerxa, Elena Bajorath, Juergen Rhein Friedrich Wilhelms Univ Lamarr Inst Machine Learning & Artificial Intellig Dept Life Sci Informat & Data Sci B ITLIMES Program Unit Chem Biol & Med Chem Friedrich Hirzebruch Allee 5-6 D-53115 Bonn Germany
The continued growth of data from biological screening and medicinal chemistry provides opportunities for datadriven experimental design and decision making in early-phase drug discovery. Approaches adopted from data ... 详细信息
来源: 评论
Comparing Explanations of Molecular machine learning Models Generated with Different Methods for the Calculation of Shapley Values
收藏 引用
MOLECULAR INFORMATICS 2025年 第3期44卷 e202500067页
作者: Lamens, Alec Bajorath, Juergen Rhein Friedrich Wilhelms Univ Dept Life Sci Informat & Data Sci LIMES Program Unit Chem Biol & Med Chem B IT Friedrich Hirzebruch Allee 5-6 D-53115 Bonn Germany Rhein Friedrich Wilhelms Univ Bonn Lamarr Inst Machine Learning & Artificial Intellig Friedrich Hirzebruch Allee 5-6 D-53115 Bonn Germany
Feature attribution methods from explainable artificial intelligence (XAI) provide explanations of machine learning models by quantifying feature importance for predictions of test instances. While features determinin... 详细信息
来源: 评论
Structural Forecasting for Short-Term Tropical Cyclone Intensity Guidance
收藏 引用
WEATHER AND FORECASTING 2023年 第6期38卷 985-998页
作者: McNeely, Trey Khokhlov, Pavel Dalmasso, Niccolo Wood, Kimberly M. Lee, Ann B. Carnegie Mellon Univ Dept Stat & Data Sci Pittsburgh PA 15213 USA Carnegie Mellon Univ Machine Learning Dept Pittsburgh PA USA Mississippi State Univ Dept Geosci Mississippi State MS USA Microsoft AI Dev Accelerat Program Cambridge MA USA
Because geostationary satellite (Geo) imagery provides a high temporal resolution window into tropical cyclone (TC) behavior, we investigate the viability of its application to short-term probabilistic forecasts of TC... 详细信息
来源: 评论
Anatomy of Potency Predictions Focusing on Structural Analogues with Increasing Potency Differences Including Activity Cliffs
收藏 引用
JOURNAL OF CHEMICAL INFORMATION AND MODELING 2023年 第22期63卷 7032-7044页
作者: Janela, Tiago Bajorath, Jurgen Rhein Friedrich Wilhelms Univ Dept Life Sci Informat & Data Sci LIMES Program Unit Chem Biol & Med Chem B IT D-53115 Bonn Germany Rheinische Friedrich Wilhelms Univ Bonn Lamarr Inst Machine Learning & Artificial Intellig D-535115 Bonn Germany
Potency predictions are popular in compound design and optimization but are complicated by intrinsic limitations. Moreover, even for nonlinear methods, activity cliffs (ACs, formed by structural analogues with large p... 详细信息
来源: 评论
Assessing Darkness of the Human Kinome from a Medicinal Chemistry Perspective
收藏 引用
JOURNAL OF MEDICINAL CHEMISTRY 2024年 第19期67卷 17919-17928页
作者: Vossen, Selina Xerxa, Elena Bajorath, Juergen Rhein Friedrich Wilhelms Univ Dept Life Sci Informat & Data Sci B IT D-53115 Bonn Germany Lamarr Inst Machine Learning & Artificial Intellig D-53115 Bonn Germany Rhein Friedrich Wilhelms Univ LIMES Inst Program Unit Chem Biol & Med Chem D-53115 Bonn Germany
In drug discovery, human protein kinases (PKs) represent one of the major target classes due to their central role in cellular signaling, implication in various diseases as a consequence of deregulated signaling, and ...
来源: 评论
Systematic generation and analysis of counterfactuals for compound activity predictions using multi-task models
收藏 引用
RSC MEDICINAL CHEMISTRY 2024年 第5期15卷 1547-1555页
作者: Lamens, Alec Bajorath, Juergen Rhein Friedrich Wilhelms Univ Dept Life Sci Informat & Data Sci LIMES Program Unit Chem Biol & Med Chem LIMES ProgramUnit Chem Biol & Med Chem Friedrich Hirzebruch Allee 5-6 D-53115 Bonn Germany Rhein Friedrich Wilhelms Univ Bonn Lamarr Inst Machine Learning & Artificial Intellig Friedrich Hirzebruch Allee 5-6 D-53115 Bonn Germany
Most machine learning (ML) methods produce predictions that are hard or impossible to understand. The black box nature of predictive models obscures potential learning bias and makes it difficult to recognize and trac...
来源: 评论
Medical Data Analysis Using AutoML Frameworks
收藏 引用
JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY 2024年 第7期19卷 4515-4522页
作者: Shin, Seunghun Park, Dongyoung Ji, Suhwan Joo, Gihun Im, Hyeonseung Kangwon Natl Univ Interdisciplinary Grad Program Med Bigdata Converg Major AI & Software Chunchon 24341 South Korea Yonsei Univ Theory Computat Lab Seoul 03722 South Korea Kangwon Natl Univ Programming Language & Machine Learning Lab Chunchon 24341 South Korea Kangwon Natl Univ Dept Comp Sci & Engn Chunchon 24341 South Korea
Recently, there has been a growing interest in applying machine learning (ML) and deep learning to medical big data and smart healthcare. However, it can be challenging to possess both domain knowledge of medical data... 详细信息
来源: 评论
Kinase Drug Discovery: Impact of Open Science and Artificial Intelligence
收藏 引用
MOLECULAR PHARMACEUTICS 2024年 第10期21卷 4849-4859页
作者: Miljkovic, Filip Bajorath, Juergen AstraZeneca Med Chem Res & Early Dev Cardiovasc Renal & Metab CVRM BioPharmaceut R&D SE-43183 Gothenburg Sweden Rhein Friedrich Wilhelms Univ Lamarr Inst Machine Learning & Artificial Intellig Dept Life Sci Informat & Data Sci LIMES Program Chem Biol & Med ChemB IT D-53115 Bonn Germany
Given their central role in signal transduction, protein kinases (PKs) were first implicated in cancer development, caused by aberrant intracellular signaling events. Since then, PKs have become major targets in diffe... 详细信息
来源: 评论
GENE REGULATORY NETWORK INFERENCE IN THE PRESENCE OF DROPOUTS: A CAUSAL VIEW  12
GENE REGULATORY NETWORK INFERENCE IN THE PRESENCE OF DROPOUT...
收藏 引用
12th International Conference on learning Representations, ICLR 2024
作者: Dai, Haoyue Ng, Ignavier Luo, Gongxu Spirtes, Peter Stojanov, Petar Zhang, Kun Department of Philosophy Carnegie Mellon University United States Machine Learning Department Mohamed bin Zayed University of Artificial Intelligence United Arab Emirates Cancer Program Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard United States
Gene regulatory network inference (GRNI) is a challenging problem, particularly owing to the presence of zeros in single-cell RNA sequencing data: some are biological zeros representing no gene expression, while some ... 详细信息
来源: 评论
Influence of Data Curation and Confidence Levels on Compound Predictions Using machine learning Models
收藏 引用
JOURNAL OF CHEMICAL INFORMATION AND MODELING 2024年 第24期64卷 9341-9349页
作者: Xerxa, Elena Vogt, Martin Bajorath, Juergen Rhein Friedrich Wilhelms Univ Dept Life Sci Informat & Data Sci B IT D-53115 Bonn Germany Rhein Friedrich Wilhelms Univ Lamarr Inst Machine Learning & Artificial Intellig D-53115 Bonn Germany Rhein Friedrich Wilhelms Univ Limes Inst Program Unit Chem Biol & Med Chem D-53115 Bonn Germany
While data curation principles and practices are a major topic in data science, they are often not explicitly considered in machine learning (ML) applications in chemistry. We have been interested in evaluating the po...
来源: 评论