咨询与建议

限定检索结果

文献类型

  • 29 篇 期刊文献
  • 18 篇 会议

馆藏范围

  • 47 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 33 篇 工学
    • 26 篇 计算机科学与技术...
    • 23 篇 软件工程
    • 16 篇 生物工程
    • 10 篇 信息与通信工程
    • 9 篇 光学工程
    • 7 篇 生物医学工程(可授...
    • 4 篇 控制科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 化学工程与技术
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
  • 26 篇 理学
    • 16 篇 生物学
    • 11 篇 数学
    • 6 篇 物理学
    • 6 篇 统计学(可授理学、...
    • 2 篇 化学
    • 1 篇 系统科学
  • 14 篇 管理学
    • 8 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 药学(可授医学、理...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学

主题

  • 5 篇 deep learning
  • 4 篇 computer vision
  • 2 篇 task analysis
  • 2 篇 image segmentati...
  • 2 篇 numerical simula...
  • 2 篇 predictive model...
  • 2 篇 benchmarking
  • 2 篇 machine learning
  • 2 篇 mathematics
  • 2 篇 floods
  • 2 篇 tumors
  • 2 篇 object recogniti...
  • 2 篇 training
  • 2 篇 network layers
  • 2 篇 deterioration
  • 1 篇 object detection
  • 1 篇 reproducibility
  • 1 篇 semantic segment...
  • 1 篇 human in the loo...
  • 1 篇 reporting practi...

机构

  • 4 篇 division of medi...
  • 3 篇 department of in...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 munich center fo...
  • 3 篇 centre for biome...
  • 3 篇 diagnostic image...
  • 3 篇 interactive mach...
  • 2 篇 university of sc...
  • 2 篇 applied computer...
  • 2 篇 universitat autò...
  • 2 篇 cibm center for ...
  • 2 篇 dementia researc...
  • 2 篇 department of nu...
  • 2 篇 department of co...
  • 2 篇 image processing...
  • 2 篇 universidad pomp...
  • 2 篇 department of ne...
  • 2 篇 university of ox...
  • 2 篇 pattern recognit...

作者

  • 5 篇 cremers daniel
  • 4 篇 zimmerer david
  • 4 篇 reid ian
  • 4 篇 jäger paul f.
  • 4 篇 isensee fabian
  • 4 篇 maier-hein klaus...
  • 3 篇 carneiro gustavo
  • 2 篇 seuret mathias
  • 2 篇 yi jinhui
  • 2 篇 galdran adrian
  • 2 篇 sistu ganesh
  • 2 篇 nikolaidou konst...
  • 2 篇 joao carreira
  • 2 篇 rezatofighi hami...
  • 2 篇 deichmann marion
  • 2 篇 ullah ihsan
  • 2 篇 schindler konrad
  • 2 篇 gall juergen
  • 2 篇 köhler gregor
  • 2 篇 qadeer khan

语言

  • 47 篇 英文
检索条件"机构=Machine Learning and Computer Vision Group"
47 条 记 录,以下是1-10 订阅
排序:
On the Implementation of Baselines and Lightweight Conditional Model Extrapolation (LIMES) Under Class-Prior Shift  4th
On the Implementation of Baselines and Lightweight Condit...
收藏 引用
Fourth International Workshop on Reproducible Research in Pattern Recognition, RRPR 2022
作者: Tomaszewska, Paulina Lampert, Christoph H. Warsaw University of Technology Faculty of Mathematics and Information Science Warsaw Poland Machine Learning and Computer Vision Group Klosterneuburg Austria
This paper focuses on the implementation details of the baseline methods and a recent lightweight conditional model extrapolation algorithm LIMES [5] for streaming data under class-prior shift. LIMES achieves sup... 详细信息
来源: 评论
Robust Autonomous Vehicle Pursuit Without Expert Steering Labels
收藏 引用
IEEE Robotics and Automation Letters 2023年 第10期8卷 6595-6602页
作者: Pan, Jiaxin Zhou, Changyao Gladkova, Mariia Khan, Qadeer Cremers, Daniel Technical University of Munich Computer Vision Group Garching85748 Germany Munich Data Science Institute Garching85748 Germany Munich Center for Machine Learning Munchen80333 Germany University of Oxford OxfordOX1 3AZ United Kingdom
In this work, we present a learning method for both lateral and longitudinal motion control of an ego-vehicle for the task of vehicle pursuit. The car being controlled does not have a pre-defined route, rather it reac... 详细信息
来源: 评论
Multi-Vehicle Trajectory Prediction at Intersections using State and Intention Information
arXiv
收藏 引用
arXiv 2023年
作者: Zhu, Dekai Khan, Qadeer Cremers, Daniel Computer Vision Group CIT Technical University of Munich This work was funded by the Munich Center for Machine Learning Germany
Traditional approaches to prediction of future trajectory of road agents rely on knowing information about their past trajectory. This work rather relies only on having knowledge of the current state and intended dire... 详细信息
来源: 评论
MV-Match: Multi-View Matching for Domain-Adaptive Identification of Plant Nutrient Deficiencies
arXiv
收藏 引用
arXiv 2024年
作者: Yi, Jinhui Luo, Yanan Deichmann, Marion Schaaf, Gabriel Gall, Juergen Computer Vision Group University of Bonn Bonn Germany Plant Nutrition Group University of Bonn Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany
An early, non-invasive, and on-site detection of nutrient deficiencies is critical to enable timely actions to prevent major losses of crops caused by lack of nutrients. While acquiring labeled data is very expensive,...
来源: 评论
How to Choose a Reinforcement-learning Algorithm
arXiv
收藏 引用
arXiv 2024年
作者: Bongratz, Fabian Golkov, Vladimir Mautner, Lukas Libera, Luca Della Heetmeyer, Frederik Czaja, Felix Rodemann, Julian Cremers, Daniel Computer Vision Group Technical University of Munich Germany Munich Center for Machine Learning Germany Department of Statistics Ludwig-Maximilians-Universität Munich Germany
The field of reinforcement learning offers a large variety of concepts and methods to tackle sequential decision-making problems. This variety has become so large that choosing an algorithm for a task at hand can be c... 详细信息
来源: 评论
LiDAR View Synthesis for Robust Vehicle Navigation Without Expert Labels
LiDAR View Synthesis for Robust Vehicle Navigation Without E...
收藏 引用
International Conference on Intelligent Transportation
作者: Jonathan Schmidt Qadeer Khan Daniel Cremers Computer Vision Group School of Computation Information and Technology Technical University of Munich Munich Center for Machine Learning (MCML) University of Oxford
Deep learning models for self-driving cars require a diverse training dataset to manage critical driving scenarios on public roads safely. This includes having data from divergent trajectories, such as the oncoming tr...
来源: 评论
Multi Agent Navigation in Unconstrained Environments using a Centralized Attention based Graphical Neural Network Controller
Multi Agent Navigation in Unconstrained Environments using a...
收藏 引用
International Conference on Intelligent Transportation
作者: Yining Ma Qadeer Khan Daniel Cremers Computer Vision Group School of Computation Information and Technology Technical University of Munich Munich Center for Machine Learning (MCML) University of Oxford
In this work, we propose a learning based neural model that provides both the longitudinal and lateral control commands to simultaneously navigate multiple vehicles. The goal is to ensure that each vehicle reaches a d...
来源: 评论
A survey of historical document image datasets
A survey of historical document image datasets
收藏 引用
作者: Nikolaidou, Konstantina Seuret, Mathias Mokayed, Hamam Liwicki, Marcus EISLAB Machine Learning Group Luleå University of Technology Aurorum 1 Norrbotten Luleå97187 Sweden Pattern Recognition Lab Computer Vision Group Friedrich-Alexander-Universität Martensstr. 3 Bavaria Erlangen91058 Germany
This paper presents a systematic literature review of image datasets for document image analysis, focusing on historical documents, such as handwritten manuscripts and early prints. Finding appropriate datasets for hi... 详细信息
来源: 评论
Depth Estimation using Weighted-loss and Transfer learning
arXiv
收藏 引用
arXiv 2024年
作者: Hafeez, Muhammad Adeel Madden, Michael G. Sistu, Ganesh Ullah, Ihsan Machine Learning Research Group School of Computer Science University of Galway Ireland Insight SFI Research Centre for Data Analytics University of Galway Ireland Valeo Vision Systems Tuam Ireland
Depth estimation from 2D images is a common computer vision task that has applications in many fields including autonomous vehicles, scene understanding and robotics. The accuracy of a supervised depth estimation meth... 详细信息
来源: 评论
Beyond the Known: Adversarial Autoencoders in Novelty Detection
arXiv
收藏 引用
arXiv 2024年
作者: Asad, Muhammad Ullah, Ihsan Sistu, Ganesh Madden, Michael G. Machine Learning Research Group School of Computer Science University of Galway Ireland Insight SFI Research Centre for Data Analytics University of Galway Ireland Valeo Vision Systems Tuam Ireland
In novelty detection, the goal is to decide if a new data point should be categorized as an inlier or an outlier, given a training dataset that primarily captures the inlier distribution. Recent approaches typically u... 详细信息
来源: 评论