咨询与建议

限定检索结果

文献类型

  • 31 篇 期刊文献
  • 21 篇 会议

馆藏范围

  • 52 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 30 篇 工学
    • 27 篇 计算机科学与技术...
    • 23 篇 软件工程
    • 10 篇 信息与通信工程
    • 8 篇 生物工程
    • 4 篇 控制科学与工程
    • 3 篇 光学工程
    • 3 篇 生物医学工程(可授...
    • 1 篇 动力工程及工程热...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
    • 1 篇 网络空间安全
  • 19 篇 理学
    • 9 篇 数学
    • 8 篇 生物学
    • 5 篇 统计学(可授理学、...
    • 3 篇 物理学
    • 2 篇 化学
    • 1 篇 系统科学
  • 10 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 4 篇 工商管理
    • 3 篇 公共管理
    • 3 篇 图书情报与档案管...
  • 3 篇 医学
    • 3 篇 公共卫生与预防医...
    • 1 篇 临床医学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 3 篇 convolution
  • 3 篇 machine learning
  • 3 篇 estimation
  • 2 篇 deep learning
  • 2 篇 generative adver...
  • 2 篇 neural networks
  • 2 篇 tracking
  • 2 篇 feature extracti...
  • 2 篇 computer vision
  • 2 篇 forecasting
  • 2 篇 convolutional ne...
  • 1 篇 complex networks
  • 1 篇 dtx
  • 1 篇 cognitive reappr...
  • 1 篇 vegetation mappi...
  • 1 篇 tissue
  • 1 篇 diffraction
  • 1 篇 neurons
  • 1 篇 productivity
  • 1 篇 spondyloarthriti...

机构

  • 6 篇 institute for ma...
  • 4 篇 data analytics g...
  • 4 篇 data and web sci...
  • 4 篇 iwr university o...
  • 3 篇 competence cente...
  • 2 篇 university of sc...
  • 2 篇 chair of systems...
  • 2 篇 machine learning...
  • 2 篇 universidad pomp...
  • 2 篇 technical univer...
  • 2 篇 department of in...
  • 2 篇 center for mr re...
  • 2 篇 fraunhofer mevis...
  • 2 篇 department of co...
  • 2 篇 fraunhofer itwm
  • 2 篇 insight sfi rese...
  • 2 篇 bmw group munich
  • 2 篇 data analytics g...
  • 2 篇 centre for biome...
  • 2 篇 diagnostic image...

作者

  • 6 篇 scholtes ingo
  • 5 篇 keuper janis
  • 4 篇 pfreundt franz-j...
  • 4 篇 gote christoph
  • 4 篇 keuper margret
  • 3 篇 perri vincenzo
  • 3 篇 christopher muts...
  • 3 篇 ho kalun
  • 2 篇 schmidt sebastia...
  • 2 篇 thorsten edelhäu...
  • 2 篇 sistu ganesh
  • 2 篇 kaile kacie
  • 2 篇 michael philipps...
  • 2 篇 miguel pato
  • 2 篇 bjoern m eskofie...
  • 2 篇 godavarty anurad...
  • 2 篇 sobhan masrur
  • 2 篇 rupert müller
  • 2 篇 uwe rascher
  • 2 篇 stefan auer

语言

  • 52 篇 英文
检索条件"机构=Machine Learning and Data Analytics Group"
52 条 记 录,以下是1-10 订阅
排序:
The EmpkinS-EKSpression Reappraisal Training Augmented With Kinesthesia in Depression: One-Armed Feasibility Study
收藏 引用
JMIR Formative Research 2025年 9卷 e65357页
作者: Keinert, Marie Schindler-Gmelch, Lena Rupp, Lydia Helene Sadeghi, Misha Richer, Robert Capito, Klara Eskofier, Bjoern M. Berking, Matthias Department of Clinical Psychology and Psychotherapy Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen Germany Machine Learning and Data Analytics Lab Department of Artificial Intelligence in Biomedical Engineering (AIBE) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen Germany Translational Digital Health Group Institute of AI for Health Helmholtz Zentrum Muenchen Neuherberg Germany
Background: Harboring dysfunctional depressogenic cognitions contributes to the development and maintenance of depression. A central goal of cognitive behavioral therapy (CBT) for depression is to invalidate such cogn... 详细信息
来源: 评论
Finding latent causes in causal networks: An efficient approach based on Markov blankets
Finding latent causes in causal networks: An efficient appro...
收藏 引用
22nd Annual Conference on Neural Information Processing Systems, NIPS 2008
作者: Pellet, Jean-Philippe Elisseeff, André Pattern Recognition and Machine Learning Group Swiss Federal Institute of Technology Zurich 8092 Zurich Switzerland Data Analytics Group IBM Research GmbH 8803 Ruschlikon Switzerland
Causal structure-discovery techniques usually assume that all causes of more than one variable are observed. This is the so-called causal sufficiency assumption. In practice, it is untestable, and often violated. In t... 详细信息
来源: 评论
A Two-Stage Minimum Cost Multicut Approach to Self-supervised Multiple Person Tracking  15th
A Two-Stage Minimum Cost Multicut Approach to Self-supervise...
收藏 引用
15th Asian Conference on Computer Vision, ACCV 2020
作者: Ho, Kalun Kardoost, Amirhossein Pfreundt, Franz-Josef Keuper, Janis Keuper, Margret Fraunhofer Center Machine Learning Sankt Augustin Germany CC-HPC Fraunhofer ITWM Kaiserslautern Germany Data and Web Science Group University of Mannheim Mannheim Germany Institute for Machine Learning and Analytics Offenburg University Offenburg Germany
Multiple Object Tracking (MOT) is a long-standing task in computer vision. Current approaches based on the tracking by detection paradigm either require some sort of domain knowledge or supervision to associate data c... 详细信息
来源: 评论
The Map Equation Goes Neural: Mapping Network Flows with Graph Neural Networks  38
The Map Equation Goes Neural: Mapping Network Flows with Gra...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Blöcker, Christopher Tan, Chester Scholtes, Ingo Data Analytics Group Department of Informatics University of Zurich Switzerland Machine Learning for Complex Networks Center for Artificial Intelligence and Data Science Julius-Maximilians-Universität Würzburg Germany
Community detection is an essential tool for unsupervised data exploration and revealing the organisational structure of networked systems. With a long history in network science, community detection typically relies ...
来源: 评论
Predicting Influential Higher-Order Patterns in Temporal Network data  14
Predicting Influential Higher-Order Patterns in Temporal Net...
收藏 引用
14th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2022
作者: Gote, Christoph Perri, Vincenzo Scholtes, Ingo Data Analytics Group University of Zurich Zurich Switzerland Eth Zurich Systems Design Switzerland Julius-Maximilians-Universität Würzburg Chair of Machine Learning for Complex Networks Würzburg Germany
Networks are frequently used to model complex systems comprised of interacting elements. While edges capture the topology of direct interactions, the true complexity of many systems originates from higher-order patter... 详细信息
来源: 评论
A Unified Approach Towards Active learning and Out-of-Distribution Detection
arXiv
收藏 引用
arXiv 2024年
作者: Schmidt, Sebastian Schenk, Leonard Schwinn, Leo Günnemann, Stephan BMW Group Munich Germany Technical University of Munich Data Analytics and Machine Learning Group Munich Germany
When applying deep learning models in open-world scenarios, active learning (AL) strategies are crucial for identifying label candidates from a nearly infinite amount of unlabeled data. In this context, robust out-of-... 详细信息
来源: 评论
Stream-based Active learning by Exploiting Temporal Properties in Perception with Temporal Predicted Loss
arXiv
收藏 引用
arXiv 2023年
作者: Schmidt, Sebastian Günnemann, Stephan BMW Group Munich Germany Technical University of Munich Data Analytics and Machine Learning Group Munich Germany
Active learning (AL) reduces the amount of labeled data needed to train a machine learning model by intelligently choosing which instances to label. Classic pool-based AL requires all data to be present in a datacente... 详细信息
来源: 评论
Deep reinforcement learning for motion planning of mobile robots
arXiv
收藏 引用
arXiv 2019年
作者: Butyrev, Leonid Edelhäußer, Thorsten Mutschler, Christopher Fraunhofer Institute for Integrated Circuits Iis Precise Positioning and Analytics Department Machine Learning and Information Fusion Group Nuremberg Germany Computer Science Department Machine Learning and Data Analytics Lab Erlangen Germany
This paper presents a novel motion and trajectory planning algorithm for nonholonomic mobile robots that uses recent advances in deep reinforcement learning. Starting from a random initial state, i.e., position, veloc... 详细信息
来源: 评论
167-PFlops deep learning for electron microscopy: From learning physics to atomic manipulation
167-PFlops deep learning for electron microscopy: From learn...
收藏 引用
2018 International Conference for High Performance Computing, Networking, Storage, and Analysis, SC 2018
作者: Patton, Robert M. Travis Johnston, J. Young, Steven R. Schuman, Catherine D. March, Don D. Potok, Thomas E. Rose, Derek C. Lim, Seung-Hwan Karnowski, Thomas P. Ziatdinov, Maxim A. Kalinin, Sergei V. Oak Ridge National Laboratory Oak RidgeTN37831-6085 United States Computational Data Analytics Group United States Geographic Information Science and Technology Group United States Imaging Signals and Machine Learning Group United States Institute for Functional Imaging of Materials United States Center for Nanophase Materials Sciences United States
An artificial intelligence system called MENNDL, which used 25,200 NVIDIA Volta GPUs on Oak Ridge National Laboratory's Summit machine, automatically designed an optimal deep learning network in order to extract s... 详细信息
来源: 评论
Design and Implementation of a data Governance Framework and Platform: A Case Study of a National Research Organization of Thailand  20
Design and Implementation of a Data Governance Framework and...
收藏 引用
20th International Joint Conference on Computer Science and Software Engineering, JCSSE 2023
作者: Chanyachatchawan, Sapa Nasingkun, Krich Tumsangthong, Patipat Chata, Porntiwa Buranarach, Marut Socharoentum, Monsak National Electronics and Computer Technology Center Leveraging Technology Solutions Section Bangkok Thailand National Electronics and Computer Technology Center Strategic Analytics Networks with Machine Learning and Ai Research Bangkok Thailand National Electronics and Computer Technology Center Data Science and Analytics Research Group Bangkok Thailand Digital Government Development Agency Bangkok Thailand
In the current era of extensive data usage across industries, data collection, preservation, utilization, and organization has become more challenging and nuanced because it is necessary to consider critical concerns ... 详细信息
来源: 评论