咨询与建议

限定检索结果

文献类型

  • 65 篇 期刊文献
  • 61 篇 会议

馆藏范围

  • 126 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 66 篇 工学
    • 43 篇 计算机科学与技术...
    • 35 篇 软件工程
    • 23 篇 生物工程
    • 17 篇 生物医学工程(可授...
    • 14 篇 信息与通信工程
    • 10 篇 控制科学与工程
    • 8 篇 光学工程
    • 8 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 土木工程
    • 3 篇 化学工程与技术
    • 2 篇 仪器科学与技术
    • 2 篇 动力工程及工程热...
  • 44 篇 理学
    • 22 篇 生物学
    • 20 篇 数学
    • 10 篇 统计学(可授理学、...
    • 9 篇 物理学
    • 7 篇 系统科学
    • 4 篇 化学
  • 23 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 10 篇 图书情报与档案管...
    • 8 篇 工商管理
    • 4 篇 公共管理
  • 16 篇 医学
    • 13 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 8 篇 公共卫生与预防医...
    • 8 篇 药学(可授医学、理...
  • 5 篇 农学
    • 4 篇 作物学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 教育学

主题

  • 8 篇 machine learning
  • 8 篇 training
  • 6 篇 feature extracti...
  • 6 篇 convolutional ne...
  • 4 篇 neural networks
  • 3 篇 legged locomotio...
  • 3 篇 deep learning
  • 3 篇 deep neural netw...
  • 3 篇 task analysis
  • 3 篇 electroencephalo...
  • 3 篇 data mining
  • 3 篇 graph neural net...
  • 3 篇 real-time system...
  • 3 篇 costs
  • 3 篇 accuracy
  • 2 篇 tools
  • 2 篇 reliability
  • 2 篇 support vector m...
  • 2 篇 hidden markov mo...
  • 2 篇 sensitivity

机构

  • 6 篇 machine learning...
  • 5 篇 department artif...
  • 5 篇 national enginee...
  • 4 篇 machine learning...
  • 4 篇 machine learning...
  • 4 篇 center for machi...
  • 4 篇 institute of adv...
  • 4 篇 institute of com...
  • 3 篇 big data institu...
  • 3 篇 key lab of high ...
  • 3 篇 machine learning...
  • 3 篇 department of co...
  • 2 篇 department of mo...
  • 2 篇 university of sc...
  • 2 篇 barcelona instit...
  • 2 篇 hochschule ansba...
  • 2 篇 jamia millia isl...
  • 2 篇 chair of visual ...
  • 2 篇 universidad pomp...
  • 2 篇 university of er...

作者

  • 15 篇 bjoern m. eskofi...
  • 8 篇 zanca dario
  • 8 篇 eskofier bjoern
  • 7 篇 eskofier bjoern ...
  • 7 篇 srinivasulu redd...
  • 7 篇 jochen klucken
  • 7 篇 robert richer
  • 6 篇 arne küderle
  • 6 篇 christopher muts...
  • 6 篇 schmidt-thieme l...
  • 5 篇 schwinn leo
  • 5 篇 bjoern eskofier
  • 5 篇 heiko gaßner
  • 5 篇 madhusudhanan ki...
  • 4 篇 tobias steiglede...
  • 4 篇 julius hannink
  • 4 篇 bjoern m eskofie...
  • 4 篇 felix kluge
  • 4 篇 wehbi mohamad
  • 3 篇 wang ran

语言

  • 121 篇 英文
  • 5 篇 其他
检索条件"机构=Machine Learning and Data Analytics Lab."
126 条 记 录,以下是91-100 订阅
排序:
Construction of an Investment Portfolio Based on Stochastic Modeling  15
Construction of an Investment Portfolio Based on Stochastic ...
收藏 引用
15th International Conference Management of Large-Scale System Development, MLSD 2022
作者: Ivanyuk, Vera Shuvalov, Konstantin Goroshnikova, Tatiana Tereliansky, Pavel Levchenko, Kirill Sunchalin, Andrew Department of Data Analysis and Machine Learning Financial University under the Government of the Russian Federation Moscow Russia Bauman Moscow State Technical University Department of Higher Mathematics Moscow Russia Lab. of Mgmt. of the Devmt. of Large-scale Syst. V.A. Trapeznikov Inst. of Control Sciences of Ras Moscow Russia Financial University under the Government of the Russian Federation Faculty of International Economic Relations Moscow Russia Plekhanov Russian University of Economics Moscow Russia Financial University under the Government of the Russian Federation Department of Mathematics Moscow Russia
The aim of the work is a comparative analysis of investment portfolios built based on stochastic modeling. We obtained actual stock price data of 80 Russian companies traded on the Moscow Stock Exchange for the last s... 详细信息
来源: 评论
DSGD-CECA: Decentralized SGD with Communication-Optimal Exact Consensus Algorithm
arXiv
收藏 引用
arXiv 2023年
作者: Ding, Lisang Jin, Kexin Ying, Bicheng Yuan, Kun Yin, Wotao Department of Mathematics University of California Los AngelesCA United States Department of Mathematics Princeton University PrincetonNJ United States Google Inc. Los AngelesCA United States Center for Machine Learning Research Peking University Beijing China AI for Science Institute Beijing China National Engineering Labratory for Big Data Analytics and Applications Beijing China Decision Intelligence Lab. Alibaba US BellevueWA United States
Decentralized Stochastic Gradient Descent (SGD) is an emerging neural network training approach that enables multiple agents to train a model collab.ratively and simultaneously. Rather than using a central parameter s... 详细信息
来源: 评论
A study on the uncertainty of convolutional layers in deep neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Shen, Haojing Chen, Sihong Wang, Ran Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University ShenzhenGuangdong518060 China College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
This paper shows a Min-Max property existing in the connection weights of the convolutional layers in a neural network structure, i.e., the LeNet. Specifically, the Min-Max property means that, during the back propaga... 详细信息
来源: 评论
Fetal Re-Identification in Multiple Pregnancy Ultrasound Images Using Deep learning
Fetal Re-Identification in Multiple Pregnancy Ultrasound Ima...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Elisabeth Gabler Michael Nissen Thomas R. Altstidl Adriana Titzmann Kai Packhäuser Andreas Maier Peter A. Fasching Bjoern M. Eskofier Heike Leutheuser Department Artificial Intelligence in Biomedical Engineering Machine Learning and Data Analytics (MaD) Lab Friedrich-Alexander-Universität Erlangen-Nurnberg (FAU) Erlangen Germany Department of Gynecology and Obstetrics Erlangen University Hospital Friedrich-Alexander-Universität Erlangen-Nurnberg (FAU) Erlangen Germany Department of Computer Science Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nurnberg (FAU) Erlangen Germany
Ultrasound examinations during pregnancy can detect abnormal fetal development, which is a leading cause of perinatal mortality. In multiple pregnancies, the position of the fetuses may change between examinations. Th...
来源: 评论
Adversarial learning with Cost-Sensitive Classes
arXiv
收藏 引用
arXiv 2021年
作者: Shen, Haojing Chen, Sihong Wang, Ran Wang, Xizhao Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Guangdong Shenzhen518060 China The College of Mathematics and Statistics Shenzhen University Shenzhen518060 China The Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
It is necessary to improve the performance of some special classes or to particularly protect them from attacks in adversarial learning. This paper proposes a framework combining cost-sensitive classification and adve... 详细信息
来源: 评论
Incorporating Hidden Layer representation into Adversarial Attacks and Defences
arXiv
收藏 引用
arXiv 2020年
作者: Shen, Haojing Chen, Sihong Wang, Ran Wang, Xizhao Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Guangdong Shenzhen518060 China The College of Mathematics and Statistics Shenzhen University Shenzhen518060 China The Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
In this paper, we propose a defence strategy to improves adversarial robustness incorporating hidden layer representation. The key of this defence strategy aims to compress or filter input’s information including adv... 详细信息
来源: 评论
Facial Expression Recognition Using Multi-Block Deep CNN
Facial Expression Recognition Using Multi-Block Deep CNN
收藏 引用
International Conference on Circuits, Communication, Control and Computing
作者: Priyadarshini V Srinivasulu Reddy U Venkata Rami Reddy Chirra Mrudula M Suneetha M Dept. of Computer Science & Engineering National Institute of Technology Andhra Pradesh India Dept. of Computer Applications Machine Learning & Data Analytics lab National Institute of Technology Tiruchirappalli India School of Computer Science & Engineering VIT-AP University Amaravathi India Department of CSE Malla Reddy College of Engineering Telangana India Independent Researcher Amaravati India
Emotions play a crucial role in decision-making, moral judgments, and other cognitive processes. The goal of this work is to identify people's facial emotions from face images. Facial expression recognition (FER),... 详细信息
来源: 评论
Inconsistency Distillation For Consistency:Enhancing Multi-View Clustering via Mutual Contrastive Teacher-Student Leaning
Inconsistency Distillation For Consistency:Enhancing Multi-V...
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Dunqiang Liu Shu-Juan Peng Xin Liu Lei Zhu Zhen Cui Taihao Li Dept. of Comput. Sci. & Fujian Key Lab. of Big Data Intelligence and Security Huaqiao University Xiamen China Zhejiang Lab Hangzhou China Xiamen Key Lab. of Computer Vision and Pattern Recognition Huaqiao University Xiamen China Key Lab. of Computer Vision and Machine Learning (Huaqiao University) Fujian Province University Xiamen China School of Information Sci. and Eng. Shandong Normal University Jinan China School of Computer Sci. and Eng. Nanjing University of Science and Technology Nanjing China
Multi-view clustering has attracted more attention recently since many real-world data are comprised of different representations or views. Recent multi-view clustering works mainly exploit the instance consistency to... 详细信息
来源: 评论
: Quantum Artificial Intelligence for the Automotive Industry
收藏 引用
KI - Künstliche Intelligenz 2024年 第4期38卷 351-359页
作者: Stollenwerk, Tobias Bhattacharya, Somtapa Cattelan, Michele Ciani, Alessandro Compostella, Gabriele Headley, David Klepsch, Johannes Klusch, Matthias Leder, Markus Macaluso, Antonio Michielsen, Kristel Nabok, Dmytro Papanikolaou, Anestis Rausch, Alexander Schumann, Marco Skolik, Andrea Yarkoni, Sheir Wilhelm, Frank K. Institute for Quantum Computing Analytics (PGI-12) Forschungszentrum Jülich Jülich Germany Volkswagen Data:Lab Volkswagen Group Munich Germany Machine Learning Research Lab Volkswagen Group Munich Germany Mercedes-Benz AG Stuttgart Germany BMW AG München Germany German Research Center for Artificial Intelligence (DFKI) Saarbrüecken Germany Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich Jülich Germany Robert Bosch GmbH Corporate Research Renningen Germany
来源: 评论
MaxHiC: A robust background correction model to identify biologically relevant chromatin interactions in Hi-C and capture Hi-C experiments (vol 18, e1010241, 2022)
收藏 引用
PLOS COMPUTATIONAL BIOLOGY 2022年 第9期18卷 e1010241页
作者: Alinejad-Rokny, Hamid Modegh, Rassa Ghavami Rabiee, Hamid R. Sarbandi, Ehsan Ramezani Rezaie, Narges Tam, Kin Tung Forrest, Alistair R. R. Harry Perkins Institute of Medical Research QEII Medical Centre and Centre for Medical Research The University of Western Australia Perth Australia Bio Medical Machine Learning Lab (BML) The Graduate School of Biomedical Engineering UNSW Sydney Sydney Australia Health Data Analytics Program AI-enabled Processes (AIP) Research Centre Macquarie University Sydney Australia Bioinformatics and Computational Biology Lab Department of Computer Engineering Sharif University of Technology Tehran Iran Center for Complex Biological Systems University of California Irvine Irvine California United States of America
Hi-C is a genome-wide chromosome conformation capture technology that detects interactions between pairs of genomic regions and exploits higher order chromatin structures. Conceptually Hi-C data counts interaction fre... 详细信息
来源: 评论