咨询与建议

限定检索结果

文献类型

  • 341 篇 会议
  • 250 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 592 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 338 篇 工学
    • 245 篇 计算机科学与技术...
    • 215 篇 软件工程
    • 72 篇 生物工程
    • 63 篇 生物医学工程(可授...
    • 53 篇 信息与通信工程
    • 46 篇 控制科学与工程
    • 44 篇 光学工程
    • 41 篇 电气工程
    • 30 篇 电子科学与技术(可...
    • 28 篇 化学工程与技术
    • 20 篇 安全科学与工程
    • 18 篇 动力工程及工程热...
    • 17 篇 机械工程
    • 14 篇 仪器科学与技术
    • 14 篇 土木工程
    • 14 篇 交通运输工程
  • 226 篇 理学
    • 113 篇 数学
    • 76 篇 生物学
    • 67 篇 物理学
    • 57 篇 统计学(可授理学、...
    • 37 篇 化学
    • 22 篇 系统科学
  • 83 篇 管理学
    • 47 篇 管理科学与工程(可...
    • 37 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 56 篇 医学
    • 42 篇 临床医学
    • 38 篇 基础医学(可授医学...
    • 26 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 19 篇 法学
    • 18 篇 社会学
  • 14 篇 农学
  • 12 篇 经济学
  • 5 篇 教育学

主题

  • 42 篇 accuracy
  • 40 篇 deep learning
  • 37 篇 machine learning
  • 26 篇 real-time system...
  • 25 篇 convolutional ne...
  • 23 篇 training
  • 21 篇 reviews
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 machine learning...
  • 18 篇 medical services
  • 18 篇 decision making
  • 15 篇 support vector m...
  • 15 篇 image segmentati...
  • 15 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 computational mo...
  • 13 篇 data models
  • 12 篇 reinforcement le...
  • 11 篇 reliability

机构

  • 18 篇 vector institute...
  • 18 篇 center for machi...
  • 17 篇 center for data ...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 13 篇 department of ar...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 10 篇 peking universit...
  • 10 篇 national enginee...
  • 10 篇 department of st...
  • 10 篇 beijing internat...
  • 9 篇 machine learning...
  • 8 篇 school of comput...
  • 7 篇 datta meghe inst...
  • 7 篇 datta meghe inst...
  • 7 篇 national biomedi...
  • 7 篇 australian insti...
  • 7 篇 university kasse...

作者

  • 22 篇 prateek verma
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 12 篇 aditya barhate
  • 11 篇 abhay tale
  • 10 篇 tale abhay
  • 10 篇 swapnil gundewar
  • 10 篇 von rudorff guid...
  • 9 篇 barhate aditya
  • 8 篇 zhu xiao xiang
  • 7 篇 li zhang
  • 7 篇 jie zhao
  • 7 篇 xia yong
  • 7 篇 xie yutong
  • 7 篇 bin dong
  • 7 篇 bjoern m. eskofi...

语言

  • 508 篇 英文
  • 83 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Engineering"
592 条 记 录,以下是341-350 订阅
排序:
WebPPG: Feasibility and Usability of Self-Performed, Browser-Based Smartphone Photoplethysmography
WebPPG: Feasibility and Usability of Self-Performed, Browser...
收藏 引用
Annual International Conference of the IEEE engineering in Medicine and Biology Society (EMBC)
作者: Michael Nissen Madeleine Flaucher Katharina M. Jaeger Hanna Huebner Nina Danzberger Adriana Titzmann Constanza A. Pontones Peter A. Fasching Bjoern M. Eskofier Heike Leutheuser Department Artificial Intelligence in Biomedical Engineering (AIBE) Machine Learning and Data Analytics Lab (MaD Lab) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen Germany Department of Gynecology and Obstetrics Erlangen University Hospital Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen Germany
Smartphones enable and facilitate biomedical studies as they allow the recording of various biomedical signals, including photoplethysmograms (PPG). However, user engagement rates in mobile health studies are reduced ...
来源: 评论
Advancing Alzheimer's Nodule Detection Through a Comprehensive Multi-Scene Deep learning Framework
Advancing Alzheimer's Nodule Detection Through a Comprehensi...
收藏 引用
International Conference on Advanced Computing and Communication Systems (ICACCS)
作者: C. Premkumar R. Rajeshwari R. Remya M. S. Cholaathiraj A. Reethika S. Bharathidasan Department of Artificial Intelligence and Data Science Bannari Amman Institute of Technology Sathyamangalam India Department of Computer Science and Engineering CMR Institute of Technology Bengaluru India Department of Electronics and Communication Engineering Vel Tech Rangarajan Dr Sagunthala R&D institute of science and Technology Chennai India Department of Artificial Intelligence and Machine Learning Bannari Amman Institute of Technology Sathyamangalam India Department of Electronics and Communication Engineering Sri Ramakrishna Engineering College Coimbatore India Department of Electronics and Communication Engineering Erode Sengunthar Engineering College Erode India
Determining the precise location of Alzheimer's nodules is essential for estimating the risk of brain cancer. Conventional CAD modules, including MRI, PET, and CT, struggle with feature extraction and segmentation... 详细信息
来源: 评论
machine learning With data Assimilation and Uncertainty Quantification for Dynamical Systems:A Review
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2023年 第6期10卷 1361-1387页
作者: Sibo Cheng César Quilodrán-Casas Said Ouala Alban Farchi Che Liu Pierre Tandeo Ronan Fablet Didier Lucor Bertrand Iooss Julien Brajard Dunhui Xiao Tijana Janjic Weiping Ding Yike Guo Alberto Carrassi Marc Bocquet Rossella Arcucci Data Science Institute Department of ComputingImperial College LondonSW72AZ London Department of Earth Science and Engineering Imperial College LondonSW72AZ London Department of Computer Science and Engineering Hong Kong University of Science and TechnologyHong Kong 999077China the IMT Atlantique Lab-STICCUMR CNRS 6285France and OdysseyInria/IMTFrance.P.Tandeo is also with RIKEN Center for Computational ScienceKobeJapan the CEREA École des Ponts and EDF R&Dîle-de-FranceFrance the Laboratoire Interdisciplinaire des Sciences du Numérique CNRSParis-Saclay UniversityF-91403OrsayFrance the Electricitéde France(EDF) 78401 ChatouFranceInstitut de Mathématiques de Toulouse31062 ToulouseFrance and SINCLAIR AI LabSaclayFrance the Sorbonne University ParisFranceand also with Nansen Environmental and Remote Sensing Center(NERSC)BergenNorway the School of Mathematical Sciences Tongji UniversityShanghai 200092China the Mathematical Institute for Machine Learning and Data Science KU Eichstaett-IngolstadtBavariaGermany the School of Information Science and Technology Nantong UniversityNantong 226019China the Department of Physics and Astronomy“Augusto Righi” University of Bologna40124 BolognaItaly
data assimilation(DA)and uncertainty quantification(UQ)are extensively used in analysing and reducing error propagation in high-dimensional spatial-temporal *** applications span from computational fluid dynamics(CFD)... 详细信息
来源: 评论
Secure Device on boarding in IoT Networks
Secure Device on boarding in IoT Networks
收藏 引用
International Conference on Science Technology engineering and Management (ICONSTEM)
作者: P. Sathyaraj Shankar Nayak Bhukya S. Rukmani Devi Chetan Umadi A. Ajina Rajendiran M Department of Electronics and Communication Engineering RMK College of Engineering and Technology Puduvoyal Tamil Nadu India Department of Computer Science Engineering (Data Science) CMR Technical Campus Hyderabad Telangana India Department of Computer Science Saveetha College of Liberal Arts and Sciences SIMATS Deemed to be University Chennai Tamil Nadu India Department of Electronics& Telecommunication Engineering Dayananda Sagar College of Engineering Bengaluru Karnataka India Department of Artificial Intelligence and Machine Learning M S Ramaiah Institute of Technology Bangalore India Department of Computer Science and Engineering Panimalar Engineering College Chennai Tamil Nadu India
The fast spread of Internet of Things (IoT) gadgets has led to unprecedented number of interconnected systems offering many applications and services. Diverse elements in IoT networks increase security vulnerabilities... 详细信息
来源: 评论
A Fast and Scalable Method for Inferring Phylogenetic Networks from Trees by Aligning Lineage Taxon Strings
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Louxin Abhari, Niloufar Colijn, Caroline Wu, Yufeng Dept. of Mathematics Centre for Data Science Machine Learning National University of Singapore 119076 Singapore Dept. of Mathematics Simon Fraser University BurnabyBCV5A 1S6 Canada Dept. of Computer Science and Engineering University of Connecticut StorrsCT06269 United States
The reconstruction of phylogenetic networks is an important but challenging problem in phylogenetics and genome evolution, as the space of phylogenetic networks is vast and cannot be sampled well. One approach to the ... 详细信息
来源: 评论
Radar-based Recognition of Activities of Daily Living in the Palliative Care Context Using Deep learning
Radar-based Recognition of Activities of Daily Living in the...
收藏 引用
IEEE EMBS International Conference on Information Technology Applications in Biomedicine (ITAB)
作者: Johanna Braeunig Desar Mejdani Daniel Krauss Stefan Griesshammer Robert Richer Christian Schuessler Julia Yip Tobias Steigleder Christoph Ostgathe Bjoern M. Eskofier Martin Vossiek Department Electrical Engineering Institute of Microwaves and Photonics Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen Germany Department Artificial Intelligence in Biomedical Engineering (AIBE) Machine Learning and Data Analytics Lab (MaD Lab) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen Germany Department of Palliative Medicine Universitätsklinikum Erlangen Erlangen Germany
The accurate detection and quantification of activities of daily life (ADL) are crucial for assessing the health status of palliative patients to allow an optimized treatment in the last phase of life. Current evaluat...
来源: 评论
Kernel based quantum machine learning at record rate: Many-body distribution functionals as compact representations
arXiv
收藏 引用
arXiv 2023年
作者: Khan, Danish Heinen, Stefan von Lilienfeld, O. Anatole Department of Chemistry University of Toronto St. George Campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
The feature vector mapping used to represent chemical systems is a key factor governing the superior data-efficiency of kernel based quantum machine learning (QML) models applicable throughout chemical compound space.... 详细信息
来源: 评论
Predicting Response to Patients with Gastric Cancer Via a Dynamic-Aware Model with Longitudinal Liquid Biopsy data
SSRN
收藏 引用
SSRN 2024年
作者: Chen, Zifan Zhao, Jie Li, Yanyan Li, Yilin Liu, Huimin Feng, Xujiao Nan, Xinyu Dong, Bin Shen, Lin Chen, Yang Zhang, Li Center for Data Science Peking University Beijing China Department of Gastrointestinal Oncology Key Laboratory of Carcinogenesis and Translational Research Ministry of Education Peking University Cancer Hospital and Institute Beijing China National Engineering Laboratory for Big Data Analysis and Applications Peking University Beijing China Guangzhou Medical University Guangzhou China Peking University Beijing China Center for Machine Learning Research Peking University Beijing China Peking University Changsha Institute for Computing and Digital Economy Changsha China
Gastric cancer (GC) presents challenges in predicting treatment responses due to its patient-specific heterogeneity. Recently, liquid biopsies have become recognized as a valuable data modality, offering essential cel... 详细信息
来源: 评论
Contrastive Continual learning with Importance Sampling and Prototype-Instance Relation Distillation
arXiv
收藏 引用
arXiv 2024年
作者: Li, Jiyong Azizov, Dilshod Li, Yang Liang, Shangsong School of Computer Science and Engineering Sun Yat-sen University China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China Department of Machine Learning Mohamed bin Zayed University of Artificial Intelligence United Arab Emirates AI Thrust Information Hub The Hong Kong University of Science and Technology Guangzhou China Department of CSE The Hong Kong University of Science and Technology China
Recently, because of the high-quality representations of contrastive learning methods, rehearsal-based contrastive continual learning has been proposed to explore how to continually learn transferable representation e... 详细信息
来源: 评论
Functional Linear Non-Gaussian Acyclic Model for Causal Discovery
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Tian-Le Lee, Kuang-Yao Zhang, Kun Suzuki, Joe Graduate School of Engineering Science Osaka University 1-3 Machikaneyama Osaka Toyonaka Japan Department of Statistics Operations and Data Science Temple University PhiladelphiaPA19122 United States Machine Learning Department Carnegie Mellon University Mohamed bin Zayed University of Artificial Intelligence PittsburghPA15213 United States Masdar city Abu Dhabi United Arab Emirates
In causal discovery, non-Gaussianity has been used to characterize the complete configuration of a Linear Non-Gaussian Acyclic Model (LiNGAM), encompassing both the causal ordering of variables and their respective co... 详细信息
来源: 评论