咨询与建议

限定检索结果

文献类型

  • 341 篇 会议
  • 250 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 592 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 338 篇 工学
    • 245 篇 计算机科学与技术...
    • 215 篇 软件工程
    • 72 篇 生物工程
    • 63 篇 生物医学工程(可授...
    • 53 篇 信息与通信工程
    • 46 篇 控制科学与工程
    • 44 篇 光学工程
    • 41 篇 电气工程
    • 30 篇 电子科学与技术(可...
    • 28 篇 化学工程与技术
    • 20 篇 安全科学与工程
    • 18 篇 动力工程及工程热...
    • 17 篇 机械工程
    • 14 篇 仪器科学与技术
    • 14 篇 土木工程
    • 14 篇 交通运输工程
  • 226 篇 理学
    • 113 篇 数学
    • 76 篇 生物学
    • 67 篇 物理学
    • 57 篇 统计学(可授理学、...
    • 37 篇 化学
    • 22 篇 系统科学
  • 83 篇 管理学
    • 47 篇 管理科学与工程(可...
    • 37 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 56 篇 医学
    • 42 篇 临床医学
    • 38 篇 基础医学(可授医学...
    • 26 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 19 篇 法学
    • 18 篇 社会学
  • 14 篇 农学
  • 12 篇 经济学
  • 5 篇 教育学

主题

  • 42 篇 accuracy
  • 40 篇 deep learning
  • 37 篇 machine learning
  • 26 篇 real-time system...
  • 25 篇 convolutional ne...
  • 23 篇 training
  • 21 篇 reviews
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 machine learning...
  • 18 篇 medical services
  • 18 篇 decision making
  • 15 篇 support vector m...
  • 15 篇 image segmentati...
  • 15 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 computational mo...
  • 13 篇 data models
  • 12 篇 reinforcement le...
  • 11 篇 reliability

机构

  • 18 篇 vector institute...
  • 18 篇 center for machi...
  • 17 篇 center for data ...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 13 篇 department of ar...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 10 篇 peking universit...
  • 10 篇 national enginee...
  • 10 篇 department of st...
  • 10 篇 beijing internat...
  • 9 篇 machine learning...
  • 8 篇 school of comput...
  • 7 篇 datta meghe inst...
  • 7 篇 datta meghe inst...
  • 7 篇 national biomedi...
  • 7 篇 australian insti...
  • 7 篇 university kasse...

作者

  • 22 篇 prateek verma
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 12 篇 aditya barhate
  • 11 篇 abhay tale
  • 10 篇 tale abhay
  • 10 篇 swapnil gundewar
  • 10 篇 von rudorff guid...
  • 9 篇 barhate aditya
  • 8 篇 zhu xiao xiang
  • 7 篇 li zhang
  • 7 篇 jie zhao
  • 7 篇 xia yong
  • 7 篇 xie yutong
  • 7 篇 bin dong
  • 7 篇 bjoern m. eskofi...

语言

  • 508 篇 英文
  • 83 篇 其他
  • 1 篇 中文
检索条件"机构=Machine Learning and Data Engineering"
592 条 记 录,以下是441-450 订阅
排序:
Automatic Diagnosis of Myocarditis Disease in Cardiac MRI Modality using Deep Transformers and Explainable Artificial Intelligence
arXiv
收藏 引用
arXiv 2022年
作者: Jafari, Mahboobeh Shoeibi, Afshin Ghassemi, Navid Heras, Jonathan Ling, Sai Ho Beheshti, Amin Zhang, Yu-Dong Wang, Shui-Hua Alizadehsani, Roohallah Gorriz, Juan M. Acharya, U. Rajendra Rokny, Hamid Alinejad Internship in BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering UNSW Sydney SydneyNSW2052 Australia Data Science and Computational Intelligence Institute University of Granada Spain Department of Mathematics and Computer Science University of La Rioja La Rioja Spain Australia Data Analytics Lab Department of Computing Macquarie University SydneyNSW2109 Australia School of Computing and Mathematical Sciences University of Leicester Leicester United Kingdom Deakin University VIC3217 Australia Department of Psychiatry University of Cambridge United Kingdom School of Mathematics Physics and Computing University of Southern Queensland Springfield Australia BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering UNSW Sydney SydneyNSW2052 Australia UNSW Data Science Hub The University of New South Wales SydneyNSW2052 Australia Research Centre Macquarie University Sydney2109 Australia
Myocarditis is a significant cardiovascular disease (CVD) that poses a threat to the health of many individuals by causing damage to the myocardium. The occurrence of microbes and viruses, including the likes of HIV, ... 详细信息
来源: 评论
Autoencoder-based Ultrasonic NDT of Adhesive Bonds
Autoencoder-based Ultrasonic NDT of Adhesive Bonds
收藏 引用
IEEE SENSORS
作者: Ivan Kraljevski Frank Duckhorn Martin Barth Constanze Tschoepe Frank Schubert Matthias Wolff Cognitive Material Diagnostics Fraunhofer IKTS Cottbus Germany Machine Learning and Data Analysis Fraunhofer IKTS Dresden Germany Ultrasonic Sensors and Methods Fraunhofer IKTS Dresden Germany Chair of Communications Engineering BTU Cottbus-Senftenberg Cottbus Germany
We present an approach for ultrasonic non-destructive testing of adhesive bonding employing unsupervised machine learning with *** models are trained exclusively on the features derived from pulse-echo ultrasonic sign... 详细信息
来源: 评论
UCPM: Uncertainty-Guided Cross-Modal Retrieval with Partially Mismatched Pairs
收藏 引用
IEEE Transactions on Image Processing 2025年 34卷 3622-3634页
作者: Zha, Quanxing Liu, Xin Cheung, Yiu-Ming Peng, Shu-Juan Xu, Xing Wang, Nannan Huaqiao University Department of Computer Science Xiamen 361021 China Key Laboratory of Pattern Recognition and Computer Vision Xiamen 361021 China Huaqiao University Fujian Key Laboratory of Big Data Intelligence and Security Xiamen 361021 China Hong Kong Baptist University Department of Computer Science Hong Kong Huaqiao University Department of Artificial Intelligence Xiamen 361021 China Fujian Province University Key Laboratory of Computer Vision and Machine Learning (Huaqiao University) Xiamen 361021 China University of Electronic Science and Technology of China Center for Future Multimedia School of Computer Science and Engineering Chengdu 610051 China Xidian University State Key Laboratory of Integrated Services Networks Xi’an 710071 China
The manual annotation of perfectly aligned labels for cross-modal retrieval (CMR) is incredibly labor-intensive. As an alternative, the collection of co-occurring data pairs from the Internet is a remarkably cost-effe... 详细信息
来源: 评论
Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging  21
Efficient hierarchical Bayesian inference for spatio-tempora...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing Systems
作者: Ali Hashemi Yijing Gao Chang Cai Sanjay Ghosh Klaus-Robert Müller Srikantan S. Nagarajan Stefan Haufe Uncertainty Inverse Modeling and Machine Learning Group Technische Universität Berlin Germany and Machine Learning Group Technische Universität Berlin Germany Department of Radiology and Biomedical Imaging University of California San Francisco Department of Radiology and Biomedical Imaging University of California San Francisco and National Engineering Research Center for E-Learning Central China Normal University China Machine Learning Group Technische Universität Berlin Germany and BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany and Department of Artificial Intelligence Korea University South Korea and Max Planck Institute for Informatics Saarbrücken Germany Uncertainty Inverse Modeling and Machine Learning Group Technische Universität Berlin Germany and Physikalisch-Technische Bundesanstalt Berlin Germany and Charité – Universitätsmedizin Berlin Germany and Bernstein Center for Computational Neuroscience Berlin Germany
Several problems in neuroimaging and beyond require inference on the parameters of multi-task sparse hierarchical regression models. Examples include M/EEG inverse problems, neural encoding models for task-based fMRI ...
来源: 评论
Tracking one-in-a-million: Large-scale benchmark for microbial single-cell tracking with experiment-aware robustness metrics
arXiv
收藏 引用
arXiv 2024年
作者: Seiffarth, Johannes Blöbaum, Luisa Paul, Richard D. Friederich, Nils Yamachui Sitcheu, Angelo Jovin Mikut, Ralf Scharr, Hanno Grünberger, Alexander Nöh, Katharina Institute of Bio- and Geosciences IBG-1: Biotechnology Forschungszentrum Jülich GmbH Jülich Germany RWTH Aachen University Aachen Germany Multiscale Bioengineering Bielefeld University Bielefeld Germany Institute for Advanced Simulation IAS-8: Data Analytics and Machine Learning Forschungszentrum Jülich GmbH Jülich Germany Institute for Automation and Applied Informatics Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany Institute of Biological and Chemical Systems Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany Microsystems in Bioprocess Engineering Karlsruhe Institute of Technology Karlsruhe Germany
Tracking the development of living cells in live-cell time-lapses reveals crucial insights into single-cell behavior and presents tremendous potential for biomedical and biotechnological applications. In microbial liv... 详细信息
来源: 评论
Cost-Effective Communication in UDN in Indoor and Outdoor Environment via machine learning
Cost-Effective Communication in UDN in Indoor and Outdoor En...
收藏 引用
Artificial Intelligence and Knowledge Discovery in Concurrent engineering (ICECONF), International Conference on
作者: K Nattar Karman V. Velmurugan Kommisetti Murthy Raju T. Sajana V. Vijayalakshmi JoshuvaArockia Dhanraj Departmeru of Artificial Intelligence and Machine Learning Saveetha School of Engineering Chennai Tamil Nadu India Department of Electronics and Communication Engineering Vel Tech Rangarajan and Dr.Sagunthala R&D Institute of science and Technology Chennai Tamil Nadu India Department of Electronics and Communication Engineering Shri Vishnu Engineering College for Women West Godavari Andhra Pradesh India Department of Artificial Intelligence and Data Science KoneruLakshmaiah Education Foundation Vaddeswaram Andhra Pradesh India Department of Networking and Communications School of Computing SRM Institute of Science and Technology Kattankulathur Tamil Nadu India Department of Mechatronics Engineering Centre for Automation and Robotics (ANRO) Hindustan Institute of Technology and Science Chennai Tamil Nadu India
In general, applications on a densely populated network are slower. When there are no opportunities to interact with the devices on the network, the user is forced to communicate at some cost. Thus, the inconsistency ... 详细信息
来源: 评论
Autonomous data extraction from peer reviewed literature for training machine learning models of oxidation potentials
arXiv
收藏 引用
arXiv 2023年
作者: Lee, Siwoo Heinen, Stefan Khan, Danish Von Lilienfeld, O. Anatole Department of Chemistry University of Toronto St. George campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Acceleration Consortium University of Toronto 80 St George St TorontoONM5S 3H6 Canada Department of Materials Science and Engineering University of Toronto St. George campus TorontoON Canada Department of Physics University of Toronto St. George campus TorontoON Canada Machine Learning Group Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data Berlin Germany
We present an automated data-collection pipeline involving a convolutional neural network and a large language model to extract user-specified tabular data from peer-reviewed literature. The pipeline is applied to 74 ... 详细信息
来源: 评论
A case-control study of reaction time deficits in a 3D virtual reality in patients with Post-COVID syndrome
收藏 引用
Scientific Reports 2024年 第1期14卷 1-12页
作者: Güttes, Moritz Lucio, Marianna Skornia, Adam Rühl, Eva Steußloff, Fritz Zott, Julia Mardin, Christian Mehringer, Wolfgang Ganslmayer, Marion Michelson, Georg Hohberger, Bettina Department of Ophthalmology Universitätsklinikum Erlangen Friedrich-Alexander-Universität Erlangen- Nürnberg Erlangen Germany Research Unit Analytical BioGeoChemistry Helmholtz Zentrum München Neuherberg Germany Department Artificial Intelligence in Biomedical Engineering (AIBE) Machine Learning and Data Analytics Lab (MaD Lab) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen Germany Department of Internal Medicine 1 Universitätsklinikum Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany
Following the Coronavirus disease 2019 (COVID-19) pandemic, a large number of people continue to report Post-COVID symptoms (PCS). A wide variety of symptoms are described, including fatigue, post-exertional malaise a...
来源: 评论
Traffic4cast at NeurIPS 2021 – Temporal and Spatial Few-Shot Transfer learning in Gridded Geo-Spatial Processes
arXiv
收藏 引用
arXiv 2022年
作者: Eichenberger, Christian Neun, Moritz Martin, Henry Herruzo, Pedro Spanring, Markus Lu, Yichao Choi, Sungbin Konyakhin, Vsevolod Lukashina, Nina Shpilman, Aleksei Wiedemann, Nina Raubal, Martin Wang, Bo Vu, Hai L. Mohajerpoor, Reza Cai, Chen Kim, Inhi Hermes, Luca Melnik, Andrew Velioglu, Riza Vieth, Markus Schilling, Malte Bojesomo, Alabi Al Marzouqi, Hasan Liatsis, Panos Santokhi, Jay Hillier, Dylan Yang, Yiming Sarwar, Joned Jordan, Anna Hewage, Emil Jonietz, David Tang, Fei Gruca, Aleksandra Kopp, Michael Kreil, David Hochreiter, Sepp Vienna Austria Institute of Cartography and Geoinformation ETH Zurich Switzerland Layer 6 AI Toronto Canada ITMO University Saint Petersburg Russia JetBrains Research Saint Petersburg Russia HSE University Saint Petersburg Russia Institute of Transport Studies Monash University ClaytonVIC Australia CSIRO’s Data61 Eveleigh Australia Institute Civil and Environmental Engineering Department Kongju National University Korea Republic of Machine Learning & Neuroinformatics Group Bielefeld University Germany Electrical Engineering and Computer Science Department Khalifa University Abu Dhabi United Arab Emirates Alchera Data Technologies Ltd Cambridge United Kingdom HERE Technologies Zurich Switzerland Silesian University of Technology Gliwice Poland Machine Learning Institute Johannes Kepler University Linz Austria
The IARAI Traffic4cast competitions at NeurIPS 2019 and 2020 showed that neural networks can successfully predict future traffic conditions 1 hour into the future on simply aggregated GPS probe data in time and space ... 详细信息
来源: 评论
Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations and Beyond
arXiv
收藏 引用
arXiv 2022年
作者: Hedström, Anna Weber, Leander Bareeva, Dilyara Krakowczyk, Daniel Motzkus, Franz Samek, Wojciech Lapuschkin, Sebastian Höhne, Marina M.-C. Understandable Machine Intelligence Lab TU Berlin Berlin10587 Germany Department of Electrical Engineering and Computer Science TU Berlin Berlin10587 Germany Department of Artificial Intelligence Fraunhofer Heinrich-Hertz-Institute Berlin10587 Germany Department of Computer Science University of Potsdam Potsdam14476 Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
The evaluation of explanation methods is a research topic that has not yet been explored deeply, however, since explainability is supposed to strengthen trust in artificial intelligence, it is necessary to systematica... 详细信息
来源: 评论